Lecture 23
Encounter in Depth and Conclusion

Xuan ‘Silvia’ Zhang
Washington University in St. Louis

http://classes.engineering.wustl.edu/ese461/
Some Final Administrative Stuff
Class Project Presentation

• Presentation order
 - Team 1 through 5
 - 16min per team (14min presentation + 2min Q&A)
 - all team members must participate

• Suggested contents
 - brief intro
 - design approach/debug methods
 - behavioral simulation results
 - design compiler results, post-synthesis simulation
 - physical layout
 - achieved performance (speed, power, area)
 - lesson learned
Final Project Report

- Due on 12/12 at noon
- Single submission as a team
- Required contents
 - design strategy (techniques applied)
 - achieved performance
 - report where the numbers come from
 - detailed explanation on the simulation results
 - behavioral simulation
 - synthesized simulation
 - digest of the timing, power, and area reports
 - division of work, individual contribution
 - appendix: all source codes, netlist, screen capture, etc
 (see final project description)
Course Evaluation

- Appreciate your feedback
- Start on today
- Please complete by December 12th
- Will account for 3 points in the final grade
Encounter in Depth
Chapter 4: Data Preparation

- Technology file
 - design rules and physical library: .LEF

- I/O assignment
 - manually create I/O assignment file

- Timing libraries
 - .lib

- Timing constraints
 - .sdc (write_sdc)

- Check designs
 - checkDesign
Chapter 5: Importing and Exporting Designs

- Prepare the netlist
 - synthesized netlist with unique cell types (.syn.v)
- Begin with LEF and Verilog
 - page 123
- Load config files
 - loadConfig
- Save and restore designs
- Import and export design data
 - floorplan, I/O, etc.
- Convert to GDSII
 - setStreamOutMode
• Utilization

• Edit Pins
 - use the Pin Editor: spreading pins, spacing

• Resize and Rotate

• Add core ring
 - core ring, block ring

• Add stripes
 - core area, over block area

• Global net connections
 - globalNetConnect -type pgpin -pin pin_name -all -override
Chapter 15: Placing the Design

- Prepare for placement
 - checkDesign, checkPlace
 - timeDesign -prePlace
 - createObstruct (no need)
 - planDesign or manual place and fix hard blocks

- Add well-tap and end-cap cells

- Place standard cells
 - placeDesign
 - setPlaceMode

- Check Placement
 - checkPlace
Chapter 16: Synthesizing Clock Trees

- Clock tree specification file
 - automatic mode
- Pre-CST and post-CST optimization
 - ckECO -preRoute
 - ckECO -clkRouteOnly
 - ckECO -postRoute
 - reportClockTree -postRoute
Chapter 16: Synthesizing Clock Trees

MacroModel pin mem_core/clk 20ps 18ps 18ps 18ps Off
AutoCTSRootPin SH1/I23/Z
NoGating rising
Buffer INV14 CLKBUF12 CLKBUF40 CLKBUF20 DEL4
MaxDelay 5ns
MinDelay 0ns
MaxSkew 500ps
End

Phase Delay 1

CTS delay1

Phase Delay 2

Buffer Input Transition Time

Skew

Phase Delay 3

Sink Input Transition Time

Phase Delay 4

MacroModel Pin mem_core/clk

Added by CTS

CTS does not trace through gates, because NoGating rising is specified, but the skew is balanced.
Chapter 20: Using the NanoRoute Router

- **Routing Phases**
 - global routing
 - detailed routing: switch boxed (SBoxes)

- **Preparation**
 - checkPlace, verifyGeometry (optional)

- **Specify routing layer**
 - routeBottomRoutingLayer
 - routeTopRoutingLayer

- **Routing commands**
 - routeDesign, setNanoRouteMode, setAttribute
 - globalRoute, detailRoute

- **Check congestion**
Monitoring and Verification

- Utilization (floorplanning)
 - target utilization (TU=%), effective utilization (EU=%)

- Congestion analysis table

<table>
<thead>
<tr>
<th>Layer</th>
<th>OverCon #Gcell</th>
<th>OverCon #Gcell</th>
<th>OverCon #Gcell</th>
<th>OverCon #Gcell</th>
<th>OverCon #Gcell</th>
<th>%Gcell OverCon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metal 1</td>
<td>22(0.01%)</td>
<td>10(0.00%)</td>
<td>0(0.00%)</td>
<td>0(0.00%)</td>
<td>0(0.00%)</td>
<td>(0.01%)</td>
</tr>
<tr>
<td>Metal 2</td>
<td>5531(2.39%)</td>
<td>1680(0.73%)</td>
<td>370(0.16%)</td>
<td>123(0.05%)</td>
<td>0(0.00%)</td>
<td>(3.33%)</td>
</tr>
<tr>
<td>Metal 3</td>
<td>4114(1.78%)</td>
<td>19(0.01%)</td>
<td>0(0.00%)</td>
<td>0(0.00%)</td>
<td>0(0.00%)</td>
<td>(1.79%)</td>
</tr>
<tr>
<td>Metal 4</td>
<td>1333(0.58%)</td>
<td>137(0.06%)</td>
<td>0(0.00%)</td>
<td>0(0.00%)</td>
<td>0(0.00%)</td>
<td>(0.64%)</td>
</tr>
<tr>
<td>Metal 5</td>
<td>5852(2.53%)</td>
<td>4(0.00%)</td>
<td>0(0.00%)</td>
<td>0(0.00%)</td>
<td>0(0.00%)</td>
<td>(2.53%)</td>
</tr>
<tr>
<td>Metal 6</td>
<td>27(0.01%)</td>
<td>0(0.00%)</td>
<td>0(0.00%)</td>
<td>0(0.00%)</td>
<td>0(0.00%)</td>
<td>(0.01%)</td>
</tr>
<tr>
<td>Total</td>
<td>16879(1.22%)</td>
<td>1850(0.13%)</td>
<td>370(0.03%)</td>
<td>123(0.01%)</td>
<td>0(0.00%)</td>
<td>(1.39%)</td>
</tr>
</tbody>
</table>

- Verify violations (Chapter 34)
 - connectivity
 - metal density
 - geometry
 - antennas
Conclusion
Topics Covered

- **Technology and Methods**
 - digital binary logic, Moore’s Law
 - level of abstraction -> design automation principles

- **Design Flow**
 - Algorithmic and architecture optimization
 - Synthesis: power, area, timing constraints
 - Static Timing Analysis
 - Physical Design: floorplan, place and route

- **Languages and Tools**
 - Verilog, Tcl
 - Synopsys VCS (Verilog Simulation)
 - Synopsys Design Compiler (Netlist Synthesis)
 - Cadence SOC Encounter (Physical Design)
Example Position

- Communications/DSP algorithms and efficient implementations.
- Demodulation, modulation, digital filters, physical layer in communications
- SOC architectures (interfaces, busses etc)
- Knowledge and hand-on experience with industry ASIC design flow including RTL coding, debugging, verification, synthesis and supporting timing closure.
- Experience with design tools such as NCSIM (and/or VCS), Cadence RC or Synopsys DC compiler,
- Experience with multiple IC tape-out in industry.
- Experience in chip bring up and performance measurement for IC and systems in laboratory to characterize and debug building blocks

This is a full time job in California, base salary > $100,000
The Trend: Follow, Catch, or Create?

- **Intelligent Recognition**
 - computer vision, artificial intelligence

- **Internet of Things**
 - Sensing (Analog)
 - Computing (Digital)
 - Wireless (RF)
 - Energy harvesting (Power)

- **Software-Hardware Co-design**
 - Analog/Digital/Mixed Signal/Radio...
 - Interface/Communication/Internet/Cloud...
 - Application/Regulation/Resource/Material...
ESE 566A: Modern System-on-Chip Design

- Advanced topics
 - system-on-chip
 - software/hardware partition
 - high-level synthesis
 - reliability, resilience, security

- More Project-centric
- More open-ended and research-oriented
Research Theme (XZ Group)

- **Problem**
 - designing micro-scale autonomous systems with enhanced security and resilience.

- **Approach**
 - co-design of algorithm, computer architecture, circuits, and sensing and actuation mechanisms.

- **Projects**
 - reconfigurable deep learning hardware
 - energy-efficient software-assisted power delivery
 - verifiable hardware against side-channel attack
 - sensor-fusion chip for vision-based robotic control
 - analog-coprocessor to speed up scientific computing
 - novel devices for non-reciprocal energy transfer
Questions?

Comments?

Discussion?