
C Programming with Mini Sumo Robots

Editing and Compiling a Program

-Open Programmer’s Notepad. This will bring up a tool for editing and compiling your

program:

 -Start Menu -> Programmers Notepad -> Programmers Notepad 2

-On the course website, download the firmware from the “Firmware” link on the Docs

page and put it into your H: drive.

-Open the archive and extract it into a new folder.

-In Programmers Notepad, go to File -> Open Project(s), and select sumo_project.pnproj.

-Double-click myprogram.c and examine the source code. This is the default code that

you will need to customize. You may want to save this file under a different name (e.g.

fred_and_jane.c).

Variable Declaration

A variable represents a quantity that can change over time. Think of it as a line on a

piece of scratchpad; only one piece of data can fit on the line, and wider pieces of paper

can store more data. It’s just like that with variables; they come in different sizes and

types.

<VariableType> VariableName;

Here are some common variable definitions:

Type Size Range Usage
char 8 bits -128 to 127 Generally used for storing text, such as a single

letter or character. Also useful for small

counters.
int 16 bits -32768 to

32767

Good for most arithmetic. Also useful for

storing/changing robot
long 32 bits -2147483648 to

2147483648

Use rarely, mainly with huge counters

Examples:
char letter;
int number;
long reallyBigNumber;

Make sure the declaration ends with a semicolon!

The range is generally 0 to 2^(bits) – 1, split between positive and negative values.

Variables can be assigned when they’re created, using the assignment operator (note the

single equals sign). For example:

char letter = ‘a’;
int number = 0;

Arithmetic

The four main arithmetic operations are typed in just as you’d expect: +,-,/,*.

x = x + 5;
y = y – 5;

Note that x and y must be declared, or the compiler with complain.

Comments

A comment is a line of text in a program that doesn’t actually do anything. C defines two

ways to specify a comment:

// Double slashes cause the compiler to ignore everything
// else on the line.
/* For longer comments,
 * use a slash and asterisk,
 * followed by an asterisk and a slash.
 */

Conditionals

If-Then-Else

Conditionals enable your code to take a different path, depending on the value of a

variable. For example, say you want to negate a value if it is less than zero:

if (var < 0)
 var = -var;

else statements execute if the conditional is false. For example:

if (var == 0)
 var = 1;
else
 var = 2;

If var equals zero, it will be set to one; otherwise, it will be set to two.

Be careful when checking equality! The single-equals (assignment) operator means

something very different than the double-equals (equality) operator. Always use the

double-equals in comparisons, and the single-equals in assignments.

Loops

Loops build upon if statements. While repeats until its condition is false. For example,

this code will repeat forever:

while (1) {
 var = var + 1;
 var = var – 1;
 //This will do nothing… forever!
}

Note the use of curly braces; if you have multiple statements, these are required.

For loops are even more useful. They have three parts: initialization, condition, and

action. Initialization set a variable to a default value. The condition is checked; if it is

true, action is taken, and the body of the loop is executed. Then condition is checked

again. For example, to do something ten times:

for (i = 1; i <= 10; ++i) {
 /*Look at the three parts of the syntax…
 * i = 1 means that the variable i will be set to 1.
 * The loop continues as long as i <= 10.
 * Before each loop, ++i means i is incremented by 1.
 * Hence, this code will be executed ten times:*/
 function(i);
}

Constants

The #define keyword is used to assign a constant. Use these where a value will be used

multiple times, so that you can change it from one place in the code.

#define THRESHOLD 5
#define ROBOT_NAME “Psychobot”
#define IDIOT_TA “Avi”

Functions

To define a function, use the following form:

<ReturnType> FunctionName (Parameter1Type Parameter1Name,
…)
{
 // code goes here
 return (value of ReturnType)
}

Talk about params

You can look at the library files for examples.

Robot-specific Functions

These functions are called drivers; they use part of the processor on your robot, and using

them makes life much easier for you.

The following functions will be very useful:

waitms(int milliseconds);

// makes the robot do nothing for the specified number
of ms

led1_on();
led2_on();
led3_on();
led1_off();
led2_off();
led3_off();
 // turns the LEDs on and off

set_left_motor_pwm(int speed);
set_right_motor_pwm(int speed);
 // sets the left motor to a speed between -255 and
255, where 255 represents full forward, -255 is full
backwards, 0 is stopped, and numbers in between represent
variable speeds.

getadc(int sensorNumber);
 // sensorNumber is a constant already defined for you.
Just enter one of the following names:
LEFT_SHARP
LEFT_FLOOR
RIGHT_FLOOR
RIGHT_SHARP

buzz(int ms, int freq);
//buzzes the buzzer

 eg. buzz(10000,400) will buzz for 10 secs at a frequency
of 400 Hz.

Compiling your Program

Go to Tools->Make All. If you’ve made no errors, the line “Process Exit Code: 0” will

show. If you have a compile error, look first for any undeclared variables, missing

semicolons, or misspelled keywords. The line number will be shown for any error. If

you can’t find the error, ask a T.A.

Downloading the Program to Your Robot

-Go to the desktop, and open AVRStudio.

-Cancel the dialog that pops up

-Click “File->Open”, and select myprogram.cof

-select JTAG ICE and ATMEGA16

-connect the emulator to the port marked JTAG (the one closest to the front of the robot)

-turn your robot on – the red LED should turn on

-click “finish” – you should see a status bar move across the bottom of the screen as the

program downloads

Running Your Robot

-once the program has downloaded, click the “run” button

BOOYAH! It should run!

Alternatively, you can single-step through the program.

