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OBJECTIVES

At the completion of this module, the student

should be able to:

1. Define the concept of axial dispersion.

2. OQutline the principal assumptions that
underlie the dispersion model, derive the
fundamental dispersion mode] equation,
and recognize the conditions of validity and
limitations of the model.

3. Estimate an effective axial dispersion
coefficient or a Peclet number from a
dimensionless correlation, and apply the
estimated value to the design or analysis of
a tubular flow reactor,

4. For a given reaction system, estimate the
conditions under which dispersion effects on
conversion may be neglected,

5. Determine the value of the Peclet number
from a measured impulse response or from
inlet and outlet tracer response peaks by
the method of moments.

PREREQUISITE MATHEMATICAL
SKILLS

1. Elementary calcu)us,

PREREQUISITE ENGINEERING AND
SCIENCE SKILLS

1. Understand the concept of a reactor model
(Module E4.5) and the uses of impulse
responses for reactor modeling (Modules
E4.4 and E4.5).

Suppose a reaction 4— B takes place in a plug flow
reactor of length £{m) in which fluid velocity is i {m/s).
Since A is continuously consumed, its concentration
decreases steadily with axial position in the reactor, so
that a plot of C, versus z appears as in Figure 1. The
existence of a gradient in the concentration of 4 gives
rise to a diffusive motion of 4 from the reactor inlet to
the outlet, which is superimposed on the convective
motion of the bulk fluid phase. The performance of the
reactor, specifically, the reactant conversion attainable
for a given feed and reactor volume, differs from that
which would be predicted, assuming ideal plug flow
{negligible diffusion), with the magnitude of the
difference depending upon the relative rates of diffusion
and convection,

To visualize the effect of diffusion on reactor
behavior, let us consider what happens (o a group of
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molecules which enter the reactor at a given instant of
time. For the sake of discussion, this module will refer
to them collectively as tracer molecules, although they
could equally well be molecules of any species in the
feed to the reactor.

Shortly after injection, the tracer is contained in a
relatively small volume. If the reactor is in idea plug
flow, the tracer cloud then moves through the reactor
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without distortion (Figure 2), and emerges in a burst to
give the characteristic ideal PFR impulse response,
shown in Figure 3, where Rdr is proportional to the
{raction of the outflow around time 1 which consists of
tracer molecules, However, il diffusion does 1uke place,
the tracer spreads away from the center of the cloud in
both the upstream and downstream directions. At
various times rom injection, the cloud might occupy
the positions in the reactor shown in Figure 4. Further
suppose that the concentration of tracer molecules in
the reactor effluent can be monitored, The measured
values would depend on the length of the reactor, the
mean fluid velocily, and the rate of diffusion: however,
the characteristic shape of a concentration versus time
plot is easily envisioned. The response begins when the
tracer which has diffused ahead of the centroid of the
cloud emerges from the reactor, builds up to a
maximum when the bulk of the tracer emerges, and
decreases as the trailing portion of the cloud passes the
detector. The responses which might be measured for
reactors of increasing length are shown in Figure 5.
The spreading in the tracer cloud (or to put it
another way, the distribution of tracer molecule
residence times in the reactor) is a consequence of
molecular diffusion, and also of turbulent mixing, if the
Reynolds number exceeds a critical value. In addition,
a nonuniform velocity profile causes different portions
of the tracer cloud to move at different rates, which
also results in a spreading of the measured response at

)racer cloud
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the reactor outlet. The term dispersion is used to
denote the combined action of al] phenomena—
diffusion and nonuniform velocities~—which give rise to
a distribution of residence times in a reactor. The term
hackmixing is also used {requently,

There are several questions to be considered
regarding the role of dispersion in the design and
analysis of chemical reactors:

1. Are there systems where in dispersion has a
significant influence on reactor performance?

2. How can one model a reactor in which dispersion is
significant?

3. How does the performance of the reactor depend on
the model parameters?

4. How can the degree of dispersion in a flow unit be
measured?

These questions will be considered in turn in the
sections that follow, To keep the analysis from getting
overly complex, our atiention will be restricted 1o
isothermal reactors in which no expansion occurs
(lquid-phase reactions, or gas-phase reactions with no
mole changes at constant pressute),

THE DISPERSION MODEL:

The Model Equation

According to Fick's law, the rate of diffusion of a
substance A is proportional 1o the negative of the
concentration gradient of 4. In any tubular reactor,
either emply or packed, reactant depletion and
nonuniform flow velocity profiles give rise to concen-
tration gradients, and hence diffusion, in both axial
and radial directions. In addition, in turbulent flow
eddy transport takes place, tending to level out
gradients in all directions to an even greater extent
than does molecular diffusion.

A reactor model which accurately reflects these
phenomena is difficult to derive, and even more
difficult to analyze. What is often done instead is to
model the reacter making the following two
assumptions;

1. The reactor is in plug flow (but not ideal plug Now);
radia] uniformities are presumed to exist, and the
process fluid moves through the reactor at a
uniform velocity it equal to the mean velocity of the
fluid in the reactor being modeled.

2. Dispersion occurs in the axial direction. The extent of
the dispersion is sufficient to account for the
combined effects of all dispersive phenomena
(molecular and turbulent mixing, and nonuniform
velocities) in the real reactor. This representation of
a llow reactor is termed the dispersed plug flow
model, ar simply the dispersion model. As has been
shown in the literature, it can successfully simulate
the behavior of reactors in which complex radial
and axial flow and transport patterns exist (3).

To derive the model equation, let us consider Figure
6, a cross section of a dispersed plug flow reactor at
steady-state. Suppose that the mean fluid velocity is
icm/s) (in a packed bed reactor, @ is the superficial
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velocity), and that D, {cm?/s) is the constant of
proportionality between the dispersive lux of a
reactant 4 and the negative gradient of 4 in the -
direction (—dC,/dz). The rate at which A4 traverses the
cross section is the sum of the rate at which it is
carried through by the convective (bulk) flow of the
fluid, plus the rate at which it passes through by
dispersion:

o (”’T"])w (?) S (em?) €, (?—3)

mol

cm? ,, dC, cm?
_D"(T)S(Cm)”?? /W

The reactor may be considered to be in ideal plug flow
10 the extent that the second term is negligible relative
to the first.

Let us further suppose that A is involved as a
reactant, and that the rate at which it reacts is —r,
{(moljcm? - 5} The steady-state material balance on A4
in the reactor may be derived by considering a
differential element from z to z+ Az. See Figure 7. The
balance takes the form inpur =ourput + consumption,
where the input term is the rate at which A enters the
element at z by convection and dispersion, the output
term is the rate of passage of A through the cross section
at z+ Az, and the consumption term is the volumetric
rate of consumption (—r,) times the volume of the
differential element (SAz). If the input and output terms
are expressed by Equation 1, the result is

d
8C,|.—D,§ (_d&)

daC
=iSC,l.+a.—D. S (d—)

—r,SA:z (2)

% Az

Upon division by SAz and rearrangement of terms, this
equation becomes;

(dCA) (dCA)
i CA!:-;—A:_CAl: =D dz & Az dz z

Az £ Az

=74 (3)

S{:mzl

Flgure 7.
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The final result is obtained by letting Az approach
zero;

dc, _ dc,
i =De 7

+ry {4)

This is the axial dispersion model equation. Once
two boundary conditions are specified and a rate law
is substituted for r,, the equation can be solved,
analytically or numerically, for C,(z); the result can in
turn be used 1o determine the reactor length and hence
the mean residence time €L /i needed to achieve a
specified conversion. Here ¢ is the fraction of the
reactor volume occupied by the flowing fluid, ie. e=1
for empty tubes and e=bed porosity for packed bed
reactors.

A number of complexities are associated with the
choice of boundary conditions for Equation 4, which
center about the guestion of whether or not diffusion
of A across the reactor boundaries takes place. These
problems will not be considered here, except 10 note
that the closer the reactor is to ideal plug flow (i.e., the
lower the value of D,) the less difference this question
makes and the more reliable is the model. For a more
complete discussion, see Reference (2).

Dimensional Analysis of the Dispersion Model

It is often useful to write a model equation such as
Equation 4 in terms of dimensionless variables. Let us
define Z=z/L and C=C,/C,,. If one assumes an nth—
order rate law,

—r,=kC%

and substitute LZ for z and C,,C for C, in Equation
4, the result may be written as

i d*Cc 4dcC
NPtdZ-_J_E"NDa(C }=0 (5)

where the dimensionless group

—n _L7D,)
NPe=”LI’De"' (L/L-l)

(6)

is the Pecler number, which represents the ratio of
characteristic dispersion time to characteristic convection
time (residence time).

Np.=kClig' L (7)

is the Damkohler number, which represents the ratio of
the characteristic convection time (residence time) and
characteristic process {reaction) time.

The proper boundary conditions discussed at length in
Reference (2) for the reactor at steady state require
continuity of flux at the entrance and exit:

I dC
Z=0 C——

N E=] (5a)
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dC -
Z=1 EZZO (5b}

Equations 5, 5a und 5b complete the staiement of the
problem.

The degree to which axial dispersion influences the
performance of a chemical reactor is determined by the
value of the Peclet number. A high value of Np,
corresponds to a slightly dispersed reactor. with
Npe— oo(D,~+0), signifying ideal plug flow. Similarly, a
low value of N, represents a high degree of backmix-
ing; in the Jimit as N, =0, backmixing is in effect
complete—the concentration of 4 is uniform through-
out the reaction volume, and the reactor functions as a
perfect mixer. Although the validity of the dispersion
model depends to a great extent on the process (for a
reactor, on the value of the Damkohler number) it may
be stated as a rule of thumb that the dispersion model
may be used with confidence as long as N, is greater than
20, and should be used with increasing caution as the
Peclet number falls below this value.

This dispersion model has been found especially
useful in modeling the behavior of packed bed
reactors. A dimensionless group which frequently
occurs in this context is the Bodenstein number

_id,
€D,

N.Ba (8)

where d,, is the mean particle diameter of the packing
and e is the void fraction (porosity) of the bed. The
inverse of the Bedenstein number, €D, fid,, is
sometimes called the intensity of dispersion®, Here D is
the dispersion coeflicient based on actual cross sectional
area available for {luid transport.

ANALYSIS OF DISPERSED PLUG FLOW
REACTORS

To predict the conversion which will be achieved in
a dispersed plug flow reactor for a reaction with
known kinetics, one must integrate Equation 4 or 5,
substituting values of the superficial velocity & and the
effective axial dispersion coefficient D,. The velocity
can be easily determined as the volumetric flow rate of
the reaction mixture divided by the cross-sectional area
of the empty reactor; the problem is to determine D,.

As will be shown in a later section, axial dispersion
coefficients (or equivalently, Peclet numbers) can be
determined from tracer response measurements. The
results of many such measurements have been used to
derive correlations which may be used to estimate
dispersion coefficients {rom known reactor geometric

*Unformunately the terminology regarding these dimensionless groups is
not universally accepted, and you should be aware that other conventions are
commanly used. The term **Bodenstein number™ is sometimes wsed to
denote the Peclet number as defined by Equation 6, and what we have called
the Bodenstein number is also called the *Peclet number based on particle
diameter. "
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variables and reaction mixture properties. In the
remainder of this section, two such correlations will be
presented. The module will illustrate how to use them,
and show how the performance of a dispersed plug
flow reactor can be predicted once the value of B, has
been estimated.

Correlations for Dispersion Coefficients

Wen and Fan [Reference (2), Figures 5-15 through
5-22.] summarize correlations for straight pipes. fixed
and fluidized beds, and bubble towers. The correlations
involve the following dimensionless groups:

D, fid or €D jid, Intensity of dispersian
Ng.=dii[v Reynolds number (empty tubes)

=ditfv Particle Reynolds number (packed beds)
Ng =v[D_ 4 Schmidt number

where d {cm) is the flow channel diameter for an empty
tube, d,, is the mean particle diameter for packed beds,
vlem?*/s) is the kinematic viscosity of the fluid
(viscosity fdensity), and D, is the molecular diffusivity
of the reactant (or tracer) in the [uid (Dpy=10"7%
cm?*fs for liquids, 1 cm?/s for gases). If the viscosity
and density of the reaction mixture, the flow channel
diameter, and void fraction of the bed, and the
superficial fluid velocity are known, one can calculate
the Reynolds number, estimate the intensity of
dispersion from the appropriate correlation, and use
the resulting value to estimate the effective dispersion
coefficient D, or D,

Figures 8 and 9 presents two such correlations, the
first for fluids flowing through empty pipes and the
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Figure 8. Dispersion intensity versus Reynolds number for flow
of fiuids in empty pipes (7).
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Figure 8. Correlation of Bodenstein number with Reynolds and
Schmidt numbers for flow of gases through fixed beds (2).
. . . 20 T T LI SR ) ] i T 1T
second for flow in packed beds. Their use will be 2 = = e o
illustrated in the next section, . First seger
Effect of Dispersion on Reactor Performance
The performance of an isothermal dispersed plug -
flow reactor can be analyzed by substituting a rate law ]
into Equation 4 or 5 and integrating the resulting -
equation (analytically for a first-order reaction, ]
otherwise numerically) to determine the reactant ; 7]
concentration {or fractional conversion) versus axial g 1
position, N _
The qualitative effect of dispersion can be inferred — . -
by noting that, as the dispersion coefficient D, varies pec e SN g )
from O to oo, the reactor behavior changes from ideal IU;]— VAT !L’:l A S S
plug flow to perfect mixing. Recall that for a single ' V=X, =€ IO
& A At

nth—order reaction at constant temperature, the
conversion obtained in a perfect mixer is always less
than that obtained in an ideal PFR with the same
space time. One might then guess that as the rate of
dispersion increases (or equivalently, as D, increases),
conversion decreases. This is in fact the case.

Figure 10 shows the results of solving Equation 4
for a first-order reaction: the abscissa is
(C loutet € Jinter, OF 1 —x 4 and the ordinate is the ratio
of the dispersed plug flow reactor volume to the volume
of an ideal PFR which would be required to achieve the
same conversion. A similar graph for a second-order
reaction is given by Levenspiel in Reference {1}, chapter
9, Figure 22.
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Figure 10. Ratlo of dispersed plug flow reactor volume to Ideal
plug fiow reactor volume versus 1-fracthonal conversion for
first~order reactlon A — products, assuming negliglble expan-
sion (7). '

The extent to which axial dispersion influences the
reactor performance is determined by the value of a
dimensionless group shown in Figure 8 as D, jiid, which is
proportional to the inverse of the Peclet number. Figure
10 confirms the expected result that as the rate of
dispersion increases, the reactor volume required to
achieve a fixed conversion increases from a minimum
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value for ideal plug flow (D,=0) to a maximum for a
perfect mixer (D, =z ).

Figure 10 cun be used in several ways, Suppose a
lirst-order reaction with a known rate constant &, is
being carried out in 4 contlinuous isethermal wbular
reactor. I the thraughput ¢ (m?/s) and desired
conversion .\, are specified then:

1. Calculate the required ideal plug flow reactor
volume as

Y ] ]
p=—z]n(1—-X_4)=Eln( ) 9)

l—x,

(Be sure you know where this formula comes from.)

. Specify a flow channel (or packing particle) diameter,

calculate S. the flow channel cross section, and
determine the superficial velocity ii=¢/S and the
ideal plug low reactor length L,=V,S.

3. Calculate the Reynolds number N, =diifv (or d,itfv
for a packed bed), then use the appropriate
correlation (e.g. Figure 8 for an empty tube) to
estimate the dispersion intensity D, /id. (If the flow
is laminar, one must also determine the Schmidt
number to use the correlation.) Next, from the value
of D, fiid and the known tube diameter, calculate the
ratio it{D, . and finally calculate the inverse Peclet
number D, /iL, vusing the value of L calculated
assuming ideal plug Now.

4. Locate the specified conversion on the abscissa of
Figure 10. Then
a) To estimate the reactor volunie required to

achieve the same conversion, move up vertically

10 the curve correspanding to the calculated

inverse Peclet number, read F{i’, on the

ordinate, and calculate V' from the known value
of V. (One can refine the calculation by
recalculating D /al with the new value of V, and

repeating until the initial and final values of I

agree.)

If, instead, one wished to calculate the final

conversion which will be achieved in the reactor

of length L, move up the constant kT line to the
curve corresponding 1o the calculated value of

D [il., and read the abscissa value (Question:

why is k7 constant in this calculation?).

|

b

—

For a first—order reaction. an analytical solution of
the axial dispersion equation is available (2). It is
instructive 10 compare the results obtained using
Figure 10 with this solution. However. graphical
representations similar to Figure 10 are useful for
reaction orders other than one for which analytical
solutions are not available,

Criteria for Neglecting Dispersion Effects

Although the dispersion model is a relatively simple
approximation to the behavior of a reaj reactor. it is
still much more cumbersome 10 use than the ideal plug
Now model. It is therefore important for the design
engineer to be able 1o predict whether or not disper-
sion effects must be taken into account in assessing
reactor performance. Criteria can be developed by
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applying perturbation theory to Equation 3. See. for
insiance, References (4) and (5). Only the pertinent
results will be presented in this section.

Suppose one is carrying out an mth—order reaction,
A—products in a continuous reactor of length L. Several
questions may be asked:

a) Given rate law parameters (k and n) and a desired
fractional conversion x,, what condition guarantees
that the reguired volume of an ideal PFR and that
that which would be calculated (taking dispersion
into account)} will be within p*, of each other?

Conditions
Np,g@ nIn ( ! ) {any reactor) {10)
P l—x,
L _ 100 n I3
—_—— ] ked bed 11
557 N n (I—».\q) (packed bed) (11)
Procedure:

Use a dimensionless correlation 10 estimate the
value of N, or Ny, from the design variables; choose a
value of p (5%, for example, or 1% if a closer tolerance
is required), and see il the condition of Equation 10 or
11 is satisfied. If it is, use the ideal plug Now model as
the basis of the design.

b} Given a set of reactor parameters {including length),
what condition guarantees that the fractional
conversion predicted assuming ideal plug flow and
that which would be predicted taking dispersion
into account will be within p®; of each other?

Conditions:
100 R
NF,=—p— (Np)* and n=1 (12)
)@ i Npa
Top (n=1) [1+(n~1)Np,]
- dn [1+(n=1)N,,], n=1 (13)

and for packed beds

L 100 (Np)?
el | (14)
dp P Naﬂ

ZE)—Q n N,

Top (=1} Ng [14+(n—1)Ng]

cIm[1+(n—1DNpJ. n=1 (15)

Note in the case of packed bed reactor, the reaction rate
constant in the above formulas is based per unit reactor
volume,

Example 1;

A second-order gas-phase reaction 4— B takes place in
an isothermal packed bed reactor. The particle Reynolds
number is greater than 30, and the length of the reactor
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determined for desired conversion assuming ideal plug
flow is 7.2 meters. The mean particle diameter of the
packing is 1 cm. The Schmidt number of the gas is close
to 1. The Damkohler number is evaluated and is found
to equal 2.9. Would the conversion actually achieved be
within 1%, of the specified value?

Solution:
Use Equation 15,

Ljd,=(720 cm) /{1 cm)= 720

From Figure 9, for a Reynolds number of 50 and a
Schmidt number of 1, set N,,=2. The right-hand side of
Equation 15 is then determined to be

(100 E 29 In (129 0
_—1*- 1 m n(l+29=101

Since 720> 101, according to Equation 15 one can use
the idea] plug flow design calculation with confidence.

The next example illustrates the design of a reactor
under conditions when dispersion cannot be neglected.

Example 2:

A liquid-phase reaction 4 — B is 10 be carried out in
an isothermal tubular reactor. The rate law for the
reaction at the proposed operating temperature is

—r, (mol/L - 5)=040 C,

A pipe with an 8 cm inner diameter is to be used, and
a 99%, conversion is desired. The feed is pure 4, and
the throughput rate is 0.24 L /s. Calculate the conver-
ston which will be achieved in the reactor, taking axial
dispersion into account, The fluid properties of the
reaction mixture may be taken 1o be those of pure
water,

Solution:
If the reactor were in ideal plug flow, the required
volume would be:

V,,:% In(l-X,)

024 L/s
0405 "

In(1-099}=276 L

and its length would be

{276 x 10%) cm?
= = 54 s
P % 4%) com? 549 cm~55 cm

The mean velocity of the reaction mixture is

; _(0.24x10% em? s
i=q[5= (Tl x 4%) e

=48 (E-En—)
S

The density of the fTuid is 1.0 (g jem?). and its
viscosity is 0.010 {g/cm - s), so that ils kinematic
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viscosity is
v DONO (RN - 9) 6616 (em? s
1.0 (gjem?)

The Reynoelds number is
dit  (8cm)4.8 em/s)

RTTT 00 cm? /s
The llow is thus turbulent, and there is no need to

calculate the Schmidt number. From Figure 8, for a
Reynolds number of 3840 ‘

=3R40

p. D, d¥ 8

il ad "L T35

The Damkohler number for this reactor is

%Cig 'L (040K1)53)
Np,= = =458
b it 48

Let us see if the conversion obtained in the reactor
is within 1% of the ideal PFR value of 0.99. The right-
hand side of Equation 12 is

-1-?3 (4.58)* = 2098

while the Peclet number is 1/0.29=3.4. The condition
of Equation 12 is thus not satisfied, and dispersion
should accordingly be taken into account in the design,

The point 1—-X,=0.01 is located on the abscissa of
Figure 10 (it is the origin of the graph). A line of
constant R is followed until the point corresponding to
D, [iL =029 is reached, at which point, 1 —X +2=0.06.
The effect of the dispersion is therefore to lower the
achievable conversion from the design value of 999 to
94°%7,

One can also estimate the volume required to
achieve the 99% conversion for the same throughput
rate. Proceeding vertically from the 99% conversion
point to the curve for D, fal =0.29, estimate
ViV=L|L, ~20, 5o that to a first approximation, a
length of roughly (2.0} (55.9)=110 cm is required to
achieve the desired conversion, when dispersion is
taken into account. {The estimate can be refined by
recalculating D /4L using the new value of L, reading
Viv,=L|L, again from Figure 10, and iterating until
1wo successive values of L agree.)

MEASUREMENT OF AXIAL DISPERSION
COEFFICIENTS

Suppose a tracer impulse is injected at the inlet of a
dispersed plug flow reactor, and the response is
monitored at the outlet. The shape of the response
depends on the relative magnitudes of the rates of
convection and dispersion: if dispersion is much slower
than convection, the reactor behaves as though it were
in ideal plug flow, while if dispersion is very rapid
compared to convection, the reactor approaches a
perfect mixer in its behavior.

The Peclet number Np,=0iL|D, (which can be
thought of as a ratio of the rate of convection 1o the
rate of dispersion) provides a measure of the extent of
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deviation from idea! flow conditions: N, — & corre-
sponds to ideal plug flow, and N, =0 represents
perfect mixing. Representative impulse responses
corresponding to various degrees of dispersion, and
several values of N, are shown in Figure 11a, b, ¢ and
d. R(1) is a property of the ouiflow which is directly
proportional to tracer concentration and which is
monitored as the response of the system to an impulse
tracer injection in the inflow.

There are several statistical techniques which can be
used to extract the value of D, from a tracer response.
One such technique is the method of moments.
Derivations of the formulas to be given, and discus-
sions of alternative estimation methods, may be found
in Reference (2).

If a tracer impulse is injected at a reactor inlet and
R{r) is the measured response at the outlet, the first
step in implementing the method of moments is to
calculate the following quantities by numerical
integration:

{ ) tR(t)dt

p=m— (16)
J R(t)dt

. 17

| L_IL
t=L/u ot

Figure 11a. Ng, = 200.

LL

Figure 11b. Np, = 20.

i

Figure 11c. Npe =5

[

Figure 11d. Npe = 3.1,
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is the variance of R(r). The mean p is the average value
of the response time I, and the variance is a measure of
the spread of the respanse peak about the mean: a low
value of &2 corresponds to a narrow peak. and
conversely.

If the peak is symmetrical (like those in Figure 12),
the mean y coincides with the time at which the
response is a maximum, and in general, corresponds 1o
the mean residence time in the system (see Module
E4.4). The value of ¢~ depends very strongly on the
degree of dispersion in the system; the higher the
degree of dispersion, the more the response curve
spreads and hence. the greater the value of ¢ .

It can be shown (3} that il the degree of dispersion is
not too great,

(=]

1] 2D,
NP(' [_‘L

Q

(18)

(]

=

The criterion for the validity of Equation 18 is

Ny, >> 1; a rough rule of thumb is Np > 10. If this
condition is not satisfied, the correct formula depends
on the boundary conditions at the inlet and outlet, and
the validity of the dispersion mode! itsell becomes
questionable [The formulas applicable for different
boundary conditions are given by Reference (I} and
(2).] A procedure for determining D, is thus as follows:

1. Measure the outlet response R(z) to a tracer impulse
injected at the inlet.

2. Calculate the mean, u, and the variance, ¢,
according to Equations 16 and 17 by numerical
integration.

3. Estimate the Peclet number using Equation 1§ as:

Np=21"[g* (19)
If the value is 10 or greater, accept it; if not, either
use a refinement of the theory which takes into
account the boundary conditions at the outlet, or
use a different model altogether.

4. Determine the mean (superficial) fluid velocity i as

the volumetric {low rate divided by the flow channel
cross section, or if both are not known, as

i= €Ly (20)

5. Estimate D, from the definition of the Peclet
number as

D,=aL{Np, (21)

Exampie 3:
An impulse response measurement is carried out on
a tubular reactor 4 meters long. The pipe inner

R Small uz R Large 52

# t F t
Figure 12.
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diameter is 10 ¢cm, and the volumetric [low rute is 0.63
L/s. The response appears in Figure 13, and is
corrected by subtracting the constant background
signal R, ; the mean and variance of the correcled
signal are calculated using Simpson’s rule (using a
computer program such as the one available for
Module £4.4), with the following results:

J‘m IR, (1)dt
pm——
J R, (t)d:

Q

Jx (t—u ¥ R (1)dt
a3 0

[ po
'[ R {n)dr

]

=505

=625 §?

From Equation 19, the Peclet number is estimated to be

Since this is greater than 10, the dispersion model and
the estimated value of the Peclet number can be used
with a reasonable degree of confidence.

The mean velocity is calculated as

. _q(cm3‘ /s) {063 x 1000)
"=8em?) T @)
and from Equation 21
D= ul.  (8.02 cm/s)(400 cm)
" Np 80

=8.02 cm/s

=140.1 cm?/s

Determination of D, ~Two Peak Method

It is not always possible to inject a tracer in a time
period short enough to be considered instantaneous
compared to the residence time of the fluid in the
system under investigation (recall that this was the
condition for the injection to be treated as a perfect
impulse). Fortunately, the analysis outlined in the
preceding section can still be performed with relatively
{ew additional calculations, if a tracer pulse (not
necessarily an impulse) is injected at a point upstream
of the inlet of the system to be modeled, and the
responses at the inlet and outlet are measured.

The dispersion coeflicient can be calculated from the
means and variances of the inlet and outlet response
curves. In Figure 14, let ¢ be the time from the

t{s}
Figure 13.

Modular Instruction Series

—pT 1 e ——
. ip -
inject inlet response
i)

»
gutlet respanse
it

beginning of the injection. First calculate:

J IR, (1)dt ,{I IR {1)dt
a

and p, = $s——
R W(ndi J Ra{n)dt
o

J (f_'l-h} R ()t J (1= p2)* Ro{1)dt
2t (22)

J R, (1)t J.:c Ro(r)d:
o 0

In terms of these moments, the mean and variance of
the system impulse response are

M= plq =i {23)

A

Figure 14.

2
1=

. O

tard

T "=05—0

2 2 2
i-g? (24
Thus, one can calculate the desired impulse response
moments while avoiding the need for a perfect impulse
injection or anything close to it. Once p and ¢ ? are
known, D, may be calculated from Equation 18, as

before.

NOMENCLATURE
C

dimensionless reactant concentration

C, = reactant concentration
Ca, = reactant concentration in the feed
D, = axial dispersion coefficient based on

total cross-sectional area

axial dispersion coeflicient based on
cross-sectional area available for fluid
flow

molecular diffusivity

tube or vessel diameter

particle diameter

total flux (convection -+ dispersion)
reaction rate constant

reactor length (calculated by the axial
dispersion madel)

= reactor length (calculated by the ideal
plug flow model)

Bodenstein number

Damkohler number

Peclet number

Reynolds number

Schmidt number

reaction order

percent deviation [rom ideal plug llow
reactor solution

volumetric flow rate

)
g t
nu I

ma

~=
|

Ng,=iid, [ D),
Np.=kCh: 'L Ja
Np=il /D,

N =divid i v)
NSr= "/Dmol

n

P

o n

q
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system response 1o impulse injection
rate of reaction (disappearance) lor
reactant 4

cross-sectional area of the reactor
time

mean residence time

mean velocity

reactor volume

volume of an ideal plug flow reactor
fractional conversion of reactant 4

I§

]

I

Z=:/L = dimensionless axial position in the

reactor
= axial position in the reactor

€ = porosity (external voidage) of packed
beds
€, = gas holdup (fraction of reactor volume
occupied by gas)
H = {irst moment of impulse response (or
viscosity)
v = kinematic viscosity
o” = variance of impulse response
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STUDY PROBLEMS
1. What is meant by the term axial dispersion?
2. How would the dispersion model equation,
Equation 4, simplify for an ideal plug flow reactor?
3. What assumptions underlie the dispersion model?

Under what conditions is this model most likely to
provide an accurate representation of a flow
reactor?

Suppose you have designed a tubular reactor.
QOutline how you would obtain an estimate of the
vaiue of the effective dispersion coefficient in the
unit from the known flow rate of the reaction
mixture, physical properties of the fluid. and the
tube dimensions.

. Once you have gone through the exercise of the

previous example and estimated D,. how would
vou estimate the conversion for a first-order
reaction which would be achieved if the reactor
had been designed to achieve a 95°, conversion,
assuming ideal plug flow?

6. A first-order reaction is carried out in a tubular

12

reactor. By inspeciion of Figure 10, indicate

whether the following statements are true or false:

tz) As the Peclet number goes from 0 1o . the
performance of a flow reactor varies from that
of an ideal CSTR to that of an ideal PFR.

{b} For a given {low rate, the assumption of ideal
plug fiow is mare likely to be valid for a long
reactor than a short ane.

(c) As the effective dispersion coefficient increases
from 0 to infinity for a given flow rate and
reactor length, the conversion in the reactor
goes from its ideal piug flow value to 0.

. Would you use an ideal plug flow model, a perfect

mixer model, or neither, 1o simuldte a reactor for
which Np. is a) 1.0x 107% b) 1.0 x 10% ¢)
1.0% 1057

. Sketch impulse responses corresponding to a)

slightly dispersed plug flow; b) moderately
dispersed plug flow; c) highly dispersed plug llow.

What are the physical significances of the mean
and the variance of an impulse response?

. How would you calculate the Peclet number for a

flow unit from a measured impulse response?

. How would you calculate the Peclet number for a

flow unit from measured tracer response peaks at
the inlet and outlet of the unit?

What is the advantage of the two-peak method?

HOMEWORK PROBLEMS

1.

bt

A teaction mixture flows through a 4 cm inner
diameter tubular reactor at a rate of 25 cm?/s. The
concentration of a reactant varies with axial
position in the reactor according 1o the formula

C , tmolfem*)=3.00 exp (—0.200z)

where - {cm) is the distance from the reactor inlet,

The axial dispersion coefficient of the reactant is

0.02 cm*/s.

a} Calculate the flux of the reactant, {mol/s),
through the cross section at =10 cm.

b} What is the predominant mode of transport—
axial convection or dispersion?

. An 8 cm 1D tubular reactor has been designed to

achieve a 98°; conversion of the reactant in a first-
order reaction. The specified reactor length is 110
cm. In a batch run at the specified reaction
temperature, the reactant half-life was found to be
4.6 seconds. The kinematic viscosity of the reaction
mixture is 0.012 cm? /5.
{a) What throughput rate (cm?/s} is the reactor
designed to accommodate?

{b} Use Figures 8 and 10 to estimate the percentage

American Institute of Chemical Engineers



difference between the design conversion and
the conversion which will actually be achieved.

(c} Comment on the applicability of the dispersion
model for this reactor,

. Anampulse response test is performed on an empty

tubular reactor. The flow rate through the reactor is

8 L/s, and the reactor inner diameler is 10 cm. The

response at the outlet can be approximated as in

Figure 13,

a) Estimate the reactor volume and the Peclet
number. You may find it helplul to know that for
the response shown in the figure

jm (t—5)R(t)dt=3.65s*
0

b) Is the dispersion model apprapriate 1o simulaie
the reactor? Explain.

¢} Suppose a first-order reaction is to be carried out
in the reactor and a 95%, conversion is specified.
Is an ideal plug flow model suitable for the
design calculation? Justify your answer.

. In Figure 16 sulfur dioxide is to be absorbed in an

aqueous K OH solution in a packed column. The
packed section is T meter in diameter. The volumet-
ric flow rate of the gas stream in the absorber is
approximately constant at 0.016 m*/s. A pulse of
radioactive argon (*'Ar) is injected into the gas feed

200

)

£.75 & 5.25
Figure 15.

time(s)
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Injet Outlet
Ry (t) N)
t=0 t{s)
inject
Figure 17,

line, and the responses close to both ends of the
packed bed are monitored with externally mounted
scintillation detectors 4 meters apart from each
ather. The responses corrected for background and
decay appear as shown in Figure 17. The means and
variances of these signals are calculated by numerical
integration, with the following results:

Hy=18s, pu,=7385s
c1=045% 03=1533s2

Use these results to estimate the mean residence
time of gas in the packed bed (more precisely, in the
portion between the detectors) the gas holdup (ie
fraction of reactor volume occupied by gas) eg (m?
gas space/m” total volume). and the effective gas-
phase dispersion coefficient D, (cm?/s). Comment on
the applicability of the dispersion model.
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Module E4.6

SOLUTIONS TO THE STUDY PROBLEMS

- e A8 e g S W ey S AR ML Gk e — S A A b

The combined action of all phenomena--molecular and turbulent
diffusion, and a nonuniform velocity prefile~- that give rise
to a distribution of residence times in a reactor.

The second derivative term is deleted. (De=0).

A1l radial nonuniformities and axial mixing phenomena can be
represented as plug flow with axjal diffusion. The model is
most reliable under conditions close to ideal plug flow (slight
degree of dispersion}. '

Calculate the Reynolds number, calculate the Schmidt number for
laminar flow, look up the Peclet number or the dispersion intensity

on a graphical correlation (e.g. Figure 8), calculate De from known
u and d. :

Calculate D_/GL. Find 0.05 on abscissa of Figure 3, move up line of
;onstant kt to value of De/uL, read corresponding value of l—xk, calculate
" .

(a} true; (b) true; (c) false

(a) perfect mixer; (b) neither; (c) ideal PFR

The mean is approximately equal to the mean residence time in the

f1ow unit. The variance is a measure of the degree to which indiv-
idual residence times are spread about the mean.

Calculate p and 0’2 by numerical integration; calculate Pe = Zuz/ﬂ'z

Calculate the means aEd ngiances gf both peaks byznugerical integration,
then u = Hout i @ % Tout T 9 in then Pe = 2u~/o“.

1t does not require a perfect impulse injection.
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