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Modeling Micromixing Effects in a CSTR 
 
CSTR, of all well behaved reactors, has the widest RTD i.e 2 1σ = .  This means that large differences in 
performance can exist between segregated flow and operations at maximum mixedness conditions. 
 
The easiest thing to treat is the case of a premixed feed.  A number of models exist.  Among them some 
are based on population balances. 
 
Let us consider the population balance description of a CSTR. 
 
Consider that the fluid in the reactor can be represented by fluid elements of the same size but with 
different reactant concentrations.  The fraction of the fluid in the system that has concentration of 
reactant A in the range between CA and CA + dCA at time t is ( ),AC tψ .  The probability density 

function of interest is a two place function ( ),AC tψ .  Here we assume that the fluid is premixed in the 
feed.  If that was not the case, then for a reaction between A and B we would need a 3 place function 
( ), ,A BC C tψ .  For the premixed case 

 
 ( , )AC tψ ψ=  
 
The general population balance equation is: 
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Define the moments of the p.d.f. 
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Acknowledge that the time rate of change of the property characterizing the p.d.f which is reactant 
concentration is the reaction rate i.e 
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A
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=  

where RA is the rate of generation of A by reaction (hence for a reactant it is negative). 
 
Then consider obtaining the moments from the above partial differential  equation. 
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If ω  = const, not function of CA 
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In the formulas below we anticipate the result that 0 1µ = . 
 20 on ωµ ω= ⇒ =  
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The following equations for the moments are obtained: 
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For n = 0 we get: 
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Since 0, 01, then it follows that 1 always.inµ µ= =  
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1 0 1 0 1, 1

For n 1 we get from eq (2):
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 0
iA At C C= =  (3a) 

 
Valid for:  i)  non-reactive tracer RA = 0 
 ii) transient reaction 

 iii) steady state reactor with 0d
dt

≡  

 

1. Need to express ( ) ( )
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C

A
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R C C dCψ∫  in terms of the moments and close the equation for the 

moments. 
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2. Need to relate β  to experimental or theoretical descriptions of turbulence and micromixing in the 

system.  First get equation for 2
cσ      (n=2). 

 
For n   = 2, we get from eq (2): 
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Now let 2β ω=  and obtain the final equation for evolution of the variance of concentration 
fluctuations. 
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 2 20 it σ σ= =  (4') 
 

Based on the population balance for a perfectly mixed vessel of V = const on a global scale i.e 
 

 outψ ψ=  
 

where 
 

 ( )A AC dCψ  =  fraction of fluid elements of concentration between CA and CA+dCA 
 
we arrive to the following two equations for the mean 
 

 ( )A A A AC C C dCψ= ∫  
 
 
 
and the variance 
 
 2 2 2 2( ) ( ) ( )c A A A A A A A AC C C dC C C dC Cσ ψ ψ= − = −∫ ∫  
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A

dC R
dt

=  and 2 2
co inσ σ=  

 
Consider first a reactor at steady state and a first order process RA = - k1CA 
 

 ( )1
10 ( )A A A Ao Ak C C dC C C
t
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assume also no concentration fluctuations in the inlet line 2, 0Ao Ao coC C σ= =  
 
We get 

 ( )1
10 A Ao Ak C C C
t
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which is the formula for a perfectly mixed CSTR.  Moreover from eq (4) 
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The mean value of the concentration AC  in unaffected by concentration fluctuations, we know that first 
order process is independent of micromixing, but the variance of concentration fluctuations is affected 
by the Damkohler number for the reaction.  At fixed collision frequency β  the concentration 
fluctuations increase with increase in 1 1 .Da k t=  
 

At fixed Da1, an increase in 2  reduces  cβ σ . 
 

Now consider a 2nd order process in a reactor at steady state 
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This yields (1st equation) 
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Reactor performance clearly depends now on concentration fluctuations.  We cannot obtain 

2 without knowing A cC σ .  However, solution of eq (4b) now requires the third moment of the ( )ACψ  
density function.  Thus, we encounter the problem of closure, i.e we would need then one more equation 
for the third moment but this would introduce additional moments, etc.  Two approaches are possible: 
 
i) we can assume the form of ( )ACψ  and calculate the required third moment from  
 this form. 
or 
 

ii) assume that concentration fluctuations are symmetric and therefore the third central 
 moment (skewness) of the ( )3

( ) is zero, i.e : ( ) 0A A A A AC C C C dCψ ψ− =∫  
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This yields 
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Now eqs (3c) and (4c) must be solved simultaneously for  2and A cC σ  provided of course β  is given 
and kinetic constant k2 is known. 
 
Although based on an ideal (exponential) RTD this is now a one parameter micromixing model for a 
CSTR with imperfect mixing on molecular level.  The parameter is β .  How can β  be obtained? 
 
1. If we could measure concentration variations around the mean in a steady state reactor then 2

cσ  
would be given directly and we could calculate AC  from eq (3b) and β  from eq (4b).  However, 
in that case we would also know AC  by direct measurement and this would not be a useful 
predictive method but could be used to test the theory.  It is not easy to measure concentration 
variations on a small scale in an exit line of a reactor or in the reactor itself.  Methods for this need 
to be developed. 

 
2. We could perform a tracer study.  Suppose we introduce a step input of tracer CoH(t).  Then 

( )o oC Cψ δ= −  and the tracer is non reactive so that R = 0. 
 
Then the equations for the first moment and the variance become: 
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If one could accurately measure 2
cσ  vs t then one could experimentally determine the time, tmax, at 

which 2
cσ  is maximal.  From tmax and eq (5) the value of β  can be calculated. 

 
If the flow through the tank does not contribute much to its hydrodynamic behavior (large t , high 
RPM, large Re, well baffled system) then a batch tracer experiment is easier to perform i.e 
introduce ( )Tm tδ  of tracer in a vessel with no net flow in or out i.e t →∞ . 
 
Then 
 

 0dC
dt

=  (3e) 
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σ βσ= −  (4e) 

 

 
20 ; (0)

                       unknown

T
c

mt C
V

σ= =

↑
 

  
 2 2ln c con tσ σ β= −l  (6) 
 
A semilogarithmic plot of 2

cnσl   vs t should yield a straight line with a slope of .β−  
 
Evangelista, J.J., Shinnar, R. and S. Katz, AIChE J., 15, 843-853 (1969), from which the above 
treatment is taken, try to relate β  to the degree of segregation J of Danckwerts by 
 

 ( ) 11
( ) 1
iVARJ

VAR t
α
α β

= − =
+

 (7) 

 
The question still remains how to measure concentration variations on a small scale in the outflow.  
One should also prove that the ones in the outflow have the same variance as the fluctuations in 
the vessel.  Scattering of light due to gradients in refractive index, fiber optics and colored tracers, 
micro-conductivity cells have all been suggested.  The student should consult the turbulence 
literature for possible experimental tools. 
 
Another approach is to assume that fluctuations on small time scale are related to space 
fluctuations at a given time.  A fast responding instrument records values of C over 

2 interval and finds  and ct Cε σ∆ =  for the interval.  The question then arises on how to show 
that the values obtained are independent of over a range of (0, )oε ε ε  and that the space and time 
variations are correlated.  Statistical methods need to be consulted. 
 

3. The final approach is to calculate β  from turbulence theory or more specifically the theory of 
isotropic turbulence.  To do that we need to digress and review briefly some key concepts of 
turbulent mixing.   


