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6.   THEORY OF ELEMENTARY REACTIONS 
 
6.1 Collision Theory 
 
Collision theory is the extension of the kinetic theory of gases in predicting reaction rates of a 
bimolecular gas phase reaction of the type: 
 
 A + A → P (1)  
 A + B → P  (2) 
 
It is assumed that the reaction rate expressed in terms of disappearance of molecules of A  is given by: 
  

− ?r A
molecules

cm 3 s
⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ =2 f Z A A  for reaction(1) 

  
A factor two appears on the right hand side of eq (1) because for each collision two molecules of A  
disappear. 
 

 − ?r A = − ?r B
molecules

cm 3 s
⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ = f Z A B   for reaction  (2)   

where 
 
ZA B  - is the total number of collisions between molecules A  and B in 1 cm3 of reaction  mixture per 
second (frequency of collision per 1 cm3) 
 
Z A A   - is the total  number of collisions among the  molecules A  in 1 cm3  per second 
f  - the fraction of molecules that possess the required excess energy for reaction i.e  the fraction of 
molecules that upon collision will react. 
 
The kinetic theory of gases postulates that the collision frequency Z A B    is proportional to the size of the 
"target", to the relative mean velocity u A B ,, and to the number concentrations of both molecular 
species.  The size of the "target" is interpreted as the maximum area perpendicular to the trajectory of 
the moving A  (or B ) molecule which when it contains a B  (or  A ) molecule will lead to an inevitable 
collision of the two. (See Figure 1). 
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FIGURE 1:    Frequency of collisions: molecule A is moving with speed u relative to B.  In 
unit time the sphere of radius   rA + rB  has swept out a volume   π rA + rB( )2

u  and has 

encountered      molecules of B. π rA + rB( )2
uNB

r

B

B

u
r

A

A

B

r

 
  
Thus 
 

 
" t arget area" = π d A B

2 = π σ A B
2

where d A B = d A + d B
2

= dAB is the radius of collision area
  

 
 d A, d B  can be interpreted as equivalent molecular diameter of molecule A  and  B ,  respectively,   if 
the molecules are viewed as hard spheres according to the classical collision theory.  d A, d B can also be 
viewed as diameters in space of the sphere within which the attraction forces of A  or  B  would force a 
collision. 
 
The mean relative velocity is given by the kinetic theory as 
 

 u A B =
8k B T
π µ AB

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1/2

 (3)  

 
where k B  = 1.38062 x 10-23JK-1  is the Boltzmann's constant. 
 

 µ A B =
m A m B

m A + m B
− reduced molecular mass  (4)  

 

with m A
g

molecule
⎛ 
⎝ 

⎞ 
⎠   being the molecular mass of A ,  m B   the molecular mass of B . 

 
The number concentrations are: 
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 N A
number of molecules of A

c m 3

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
; N B

number of molecules of B
cm 3

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
 

 
The fraction of molecules having sufficient energy levels to react are given by the Boltzmann factor 
 
 
 f = e − E m /k B T  
 
where E  m  is the difference in energy of an "excited" and "base" molecule. 
 
The rate then becomes: 
 

 − ?r A
molecules

c m 3 s
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
= πσ A B

2 8k BT
π µ AB

e − E m/ k B T N A N B  (5) 

    

We want to express the rate in 
mol
lit s

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
 and the concentrations in 

mol
lit

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
.  Then: 

 

 

N a

10 3 C A =N A ;
N a

10 3 C B = N B

− r A
moles
lit s

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
x

N a

10 3 = − ?r A
molecules

cm 3 s
⎛ 
⎝ 
⎜ ⎞ 

⎠ 

 

 
Also 
 

 k B N a = R ; µ A B N a = M A B =
M A + M B

M A M B

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ 

−1

 

 
where N a  is the Avogardro's constant 
 

 
N a = 6.02217 x 10 23 molecules

mole
M A ,M B − molecular weights

 

 
The expression for the rate finally becomes 
 

 

  

− r A
mole
lit s

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
= σ A B

2 8π R T
M A B

e −E /RT N a
10 3

k
1 2 4 4 4 4 4 3 4 4 4 4 4 

C A C B  (6)  

 
Thus 
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 k o = σ AB
2 8 π R

M AB

N a
10 3  (7b) 

   
Collision theory predicts the dependence of the rate constant on temperature of the type T 1/2 e  - E / R T  
and allows actual prediction of the values for the frequency factor from tabulated data. 
 
For reaction of type (1) 
 

 Z A A =
1
2

πσ A
2 8k B T

π µ AA

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ 

1/ 2

N A
2  (8) 

 

Factor 
1
2

 is there since all the molecules are the same and otherwise the collisions would have been 

counted twice.  This factor is offset by the 2 in the rate expression which simply indicates that in every 
collision two molecules of A  react. 
 

Now µ A A =
m A
2

 

 − ?r A
molecules

c m 3 s
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
= σ A

2 16π k B T
m a

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ 

1/ 2

e − E m/ k B T NA
2  (9a)

 

  

− r A
moles
lit s

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
= 4σ A

2 πR
MA

N a

10 3 T 1/ 2

k o coll

1 2 4 4 4 3 4 4 4 

e − E / RT

k
1 2 4 4 4 4 4 3 4 4 4 4 4 

CA
2

 (9b) 

Some predictions of the collision theory will be compared later to transition state theory. 
 
Note:  T  1/2  dependence is almost entirely masked by the much stronger e - E / R T   dependence.  Thus 
Arrhenius form is a good approximation. 
 
The relationship to Arrhenius parameters is: 
 

 
k o Arr

= k o coll
e T ( )1/2

 (10a)  

 E Arr = E coll +
1
2

R T  (10b) 

  
Original comparison of the collision theory prediction with experimental values for the reaction 
2 H I → H 2 + I 2   resulted at 556K in k predicted = 3.50 x 10-7 (L/mol s) as opposed to kexp = 3.52 x 10-7 
(l/mol s).  This proved to be an unfortunate coincidence as later it became evident that predictions based 
on collision theory can lead to gross discrepancies with data.  For example, for more complex gas 
molecules predicted pre-exponential factors are often order of magnitude higher than experimental 
values and severe problems arise for reactions of ions or dipolar substances. 
 
The modifications to the collision theory recognize that the collision cross-sectional area is not a 
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constant,  but a function of energy, introduce a steric factor and acknowledge that molecules do not 
travel at the same speed but with a Maxwell-Boltzmann distribution  of velocity!  If one considers just 
the translational energy, ε t  , one can argue that the rate constant can be predicted from 
 

 k T( ) = (
8

πµ k T( )3 )1/ 2 ε t
o

∞

∫ σ ε t( )e− ε t / kT d ε t
 (11)  

 
Similar but more complex expressions can be derived accounting for rotational and vibrational energies.  
Modern analytical  tools allow measurement of effective reaction cross-section when reactant molecules 
are in prescribed vibrational and rotational states.  When  such information is available collision theory 
in principle leads to the 'a priori' prediction of the rate constant. 
 
Example 1.  Using collision theory estimate the specific rate constant for the decomposition of H I  at 

321oC, σ H I  =  3.5 A,  E = 44000
cal
mol

 .  Experimentally the rate constant is found to be 

 k = 2.0 x 10 −6 lit
mol s

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
.  Collision theory prediction is: 

 k = 4σ H I
2 π RT

M H I

N a

103 e − E / RT  

k = 4 x 3.5 x 10 −8( )2 π 8.314 x 10 7 x 273 + 321( )
127.9

e
− 44000

1.987 x 594 x
6.023 x 10 23

103  

 

σ H I = 3.51 x 10 −8 cm ; R = 8.314 x 10+7 erg / mol K

T = 273 + 321 = 594 K , M H I = 127.9

N a = 6.023 x 10 23 molecules / mol

 

 

 
k = 6.63 x 10 −6 lit

mol s
← collision theory estimate

k = 2.0 x 10 −6 lit
mol s

← experimental value
 

 Collision theory usually gives the upper bound of the rate constant. 
________________________________________________________________________ 
 
6.2 Classical  Transition State Theory (CTST) 
 
This is the most promising of the rate theories and deals again with elementary reactions.  However, 
even an elementary reaction is not viewed any more to occur exactly in one step (this shows how 
flexible the definition of elementary reactions has become since they are supposed to occur in one step).  
 
According to transition state theory every elementary reaction proceeds through an activated complex - a 
transition state. 
 

 
reac tants( )⇔ transition state( ) ⇔ products( )

A + B ⇔ Z * ⇔ Q + P
 (12)  
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The transition state is a little more than the fraction of excited (energized) reactant molecules as in 
Arrhenius or collision theory.  Its structure is neither that of the reactants nor of products, it is someplace 
in between and its concentration is always orders of magnitude lower than that of reactants or products.  
The transition state can either be formed starting  solely with reactant molecules from the left or with 
product molecules from the right.  The energy picture is as shown in Figure 2. 
 
FIGURE 2:    Energy Diagram (Simplified for the Classical Transition State Theory)  

  E f

  

Reaction Coordinate

Eoz

  −∆H Eb

Eob
*

Eof
*

Eor

ZZ
* #

Energy 
Level

Eop
Base Level

 
 
 
 Eor - energy level of reactants 
 Eop - energy level of products 
 Eoz - energy level of transition state 
 Eof* - activation barrier for forward reaction 
 Eob* - activation barrier for reverse reaction 
 ∆ Ho - heat of reaction 
 
E o f

* = E f = E o z − E o R

E o b
* = E b = E o z − E oP

∆ H = E o p − E o R = E o z − E b( )− E oz − E f( )
∆ H = E f − E b

 

 
When the overall system,  i.e reactants and products,  is in equilibrium,  clearly the net rate of reaction is 
zero, i.e 
 
 r  =   r f  -  r b   =  0 
 
However, even in overall equilibrium a certain number of reactant molecules gets transformed per unit 
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time into the transition state,  and the same number gets transformed from transition state to reactants as 
required by the principle of microscopic balancing.  At the same time a certain rate of exchange exists 
between transition state and products which is balanced by the exchange between products and transition 
state.  That exchange rate at overall equilibrium is proportional to ν C z where ν  is the frequency of 

occurrence of exchange 
1
s

⎛ 
⎝ 

⎞ 
⎠  and C z  the number concentration of the transition state. 

 The three fundamental assumptions of transition state theory are: 
 
1. The rate of reaction is given by 
 
 r = ν C z  (13) 
    
 even when the system is removed from equilibrium i.e when there are no products, or products are 

being removed, or they are present in amount less than required by equilibrium.  This is equivalent 
to assuming that the equilibrium between the transition states and reactants is always established. 

 
2. The frequency ν   involved is a universal frequency, it does not depend on the nature of the 

molecular system and is given by 
 

 ν =
k B T
h p

 (14) 

  
 where k b   = 1.38062 x 10-23 JK-1  Boltzmann's constant 
 
           h p  = 6.6262 x 10-34 Js Planck's constant 
 
           T (K) - absolute temperature 
 
3. The reaction system is "symmetric" with respect to the transition state and the above is also true 

when starting from products to make reactants (from right to left).  A more rigorous treatment is 
outlined in appropriate textbooks on kinetics (e.g. see Laidler, Chemical Kinetics). This is a very 
bold assumption asserting that the equilibrium rate of exchange is equal to the rate for the system 
out of equilibrium.   If we refer to Figure 3, the above assumptions indicate  that once reactant 
molecules have reached the col of the activated complex (transition state)  from the left there is no 
going back and they get converted to products.  Similarly, the product molecules that reach the col 
from the right cannot turn back and do get transformed to reactants. 
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FIGURE 3:   Profile through the minimum-energy path, showing two-dividing surfaces at the 
col separated by a small distance δ . 
 

  
Xr

m[ ]

δ
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Reactants
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Let us look at the forward reaction (from left to right) 
 
 r f = ν C z  
 
Reactants and transition state are at equilibrium 
 

 

K * = a z
a A a B

= γ z C z
γ A γ B C A C B

= K γ K c

C z = K * K γ
−1 C A C B ν =

k B T
h p

r f =
k B T K *

h p γ z
γ A γ B C A C B =

k B T
h p γ z

K * a A a B

 
 
 
  (15) 

  
Now we can define a rate constant for the forward reaction that is a function of temperature  
only 

   

k fi
T( )= k B T

h p

K *.   This yields

r f =
k fi

T( )
γ z

a A a B and K * = e
−

∆ G *

R T
= e

−
∆ H *

R T
e

∆S *

R

 (16)  
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Similarly for the reverse reaction r b = ν C z ,   and the equilibrium between transition states and 
products is always established. 
 

 

K ≠ = γ z C z
γ Q γ P C Q C P

C z =
a Q a p

γ z
K ≠

K≠ = e
− ∆ G ≠

RT

= e
− ∆ H ≠

R T

e
∆ S≠

R

 

The reverse rate is now expressed by 
  

 r b =
k bi T( )

γ z

a Q a P where k bi T( )=
k B T
h p

K ≠  (17) 

    
In the above ∆ G *,∆ H *,∆ S * and ∆ G ≠, ∆ H ≠, ∆ S ≠   are the Gibbs free energy, heat of reaction, and 
change in entropy for formation of the transition state starting from reactants and products, respectively. 
 
The net rate of reaction then is 
 

 r = rf − rb =
1
γ z

k fi aA aB − kb iaQaP[ ] 
or 

 r =
kBT
hpγ z

K*aAaB − K
≠

aQaP[ ]=
koT
hpγ z

e
− ∆H *

RT e
AS*

R aAaB − e
− ∆H ≠

RT e
− ∆S≠

R aQaP

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  (18) 

   
At equilibrium r = 0 so that the equilibrium constant K for the reaction is recovered: 
 

 K =
aQaP

aAaB

= e
− ∆H *−∆H≠

RT e
∆S*− ∆S≠

R = e
− ∆G* −∆G≠

RT  

    
Therefore, the following equations hold: 
 

 

∆ H * − ∆ H ≠ = ∆ H° − heat of reaction

∆ S * − ∆ S ≠ = ∆ S ° − entropy due to reaction

∆ G * − ∆ G ≠ = ∆ G ° − Gibbs free energy change due to reaction

∆ H * = E f ∆ H ≠ = E b

 

 
Let us call k  rate constants which are functions of T  only. f T( ) = k f i

k b T( )= k b i

 

 [ PQbfBAfi
z

aakaakr
i

−=
λ
1 ] (19) 
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We usually express the rate in the form: 
 
 r  =  k f C A C B  - k  b  C Q C P (20) 
 
This gives the relationship: 
 

 k f = k f i

γ A γ B
γ z

k b = k b i

γ Q γ P

γ z
 (21)  

 
This is a very important result of the transition state theory.  It tells us that whenever we write and 
evaluate a rate expression with its driving force being expressed in molar concentrations the rate 
constants, k f  , k b  , etc. that appear in such expressions are not only functions of temperature but also 
could be functions of pressure and concentration.  This is obvious from the above since k   are 
functions of temperature only but 

f i
, k b i

γ A,γ B, γ Q, γ P ,γ z   can also be functions of pressure or 
concentration. 
 
The above relationship between rate constants k f , k b  in nonideal systems for  rates whose driving force 
is as usual expressed in concentrations, and the ideal rate constants k  which would be observed 
in a system with all activity coefficients of unity, is frequently used to correct the constants for pressure 
effects in gas reactions or for concentration effects in ionic solutions. 

f i
, k b i

 
Relationship to Arrhenius parameters k o Arr

e − E Arr / RT  is: 
 

 k o Arr
= e

k B T 
γ zh p

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ e ∆ S ° /R ; E Arr = ∆ H * + R T  (22)  

 
Note:  Sometimes transition state theory is interpreted by asserting that the rate is proportional to the 
product of the universal frequency and the activity of the transition state (rather than to its 
concentration).  This would lead essentially to the same expressions as shown above except that γ z   
would not appear,  i.e wherever it appears it would be replaced by unity.   
________________________________________________________________________ 
 
Example.2  
Estimate the rate constant for decomposition of methyl aride CH3N3 by transition state theory at 500K, 
given  ∆ H * = 42 ,500 cal / mol , ∆ S * = 8.2 cal / mol K.
  

 k =
k B T
h p

e
− ∆ H *

R T

e
∆ S*

R

 
k =

1.38062 x 10 −23 x 500
6.6262 x 10 − 34 e

−
42500

1 .987 x 500

e
8 .2

1.987

k = 1.705 x 10 −4 s −1

 

 

10 



ChE 505 – Chapter 6N Updated 01/31/05 

When we use transition state theory to calculate the rate constant for reaction of the type A = B   there is 
no ambiguity as to the units of the rate constant.  However, when we deal with bimolecular reactions of 
the type A + B ⇔ P + Q   and 
 

 
  
k f =

k B T
ν}

h p

Kd
* ; kh =

k B T
ν}

h p

K d
≠  

 

the units of the rate constants are not governed by the kinetic factor ν
1
s

⎛ 
⎝ 

⎞ 
⎠  but rather by the 

thermodynamic factor ,  i.eK d
* and K d

≠  by the choice of standard states for calculation of  
 upon which the calculation of these parameters ∆ G * and ∆ G ≠ K d

*,K d
≠  are based.  If concentration is 

chosen for the driving force in the rate expression then d = c  and Kd
* = Kc

* = Cz
* / CACB , if pressure is 

chosen then d = p  and .  Similarly,  Kp
* = Pz

* / pA pB
 

 . Kc
≠ =C z

* /C pCq, and K p
≠ = Pz

* / PpPq

 
It is useful therefore to review the use of standard states and relationships between thermodynamic 
quantities at this point. 
 
For a general reaction 
 
 

 
j=1

s

∑ ν j A j = 0  

 
The thermodynamic quantities   are generally tabulated for standard states of 1 
atm and ideal gas.  Frequently we want to transform these to standard states expressed in concentration 

units, generally 1

K, ∆ H °,∆ G °,∆ S °,C p
°

mol
lit

1 M( ) . 

________________________________________________________________________ 
 
Example. 3 

When using transition state theory for a bimolar reaction for which  , since two moles of 

reactant give one mole of transition complex, and when  the quantities  are based on 
standard states at 1 atm of ideal gases , then from transition theory 

υ j
j=1

S

∑ = −1

K *,∆ H *,∆ S *

 
∆ H p

* = ∆ Hc
* − RT . 

 k p =
k B T
h p

e
∆S p

*

R e
−

∆ H p
*

RT atm −1,s −1( ) 

 
Compared with Arrhenius equation 
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 k p f Arr
= k p o

' e − Ep
' /R T atm−1,s −1( ) 

 
yields the frequency factor 
 

 k p o

' = e
k B T 
h p

e
∆ S p

*

R T atm −1,s −1( ) 
 
and activation energy E p

' = ∆ H * + RT = ∆ U *  
 
Compared with Arrhenius equation in concentration units 
 

 k c = k c o
e −E c /R T lit

mol
, s −1⎛ 

⎝ 
⎞ 
⎠  

 
it gives the frequency factor: 
 

 

  

k c o
= k p o

' R' T( ) e = e 2 k BT 
h p

R'T e
∆ S p

*

R

= e2 k B T 
h p

e
∆ S p

* + Rln R'T
R = e2 k B T

h p
e

∆ Sc
*/R

 

 
since ν j = − 1∑  going from two reactant molecules to one molecule of the transition state 
 
The activation energy is 
 
 E c = E p

' + RT = ∆ H p
* + 2 RT = ∆ U * + R T  

________________________________________________________________________ 
 
Example. 4.  The homogeneous dimerization of butadiene (CH2=CH-CH=CH2) has been studied 
extensively.  An experimental rate constant based on disappearance of butadiene was found as:  

 

  

k = 9.2 x 10 9

k o

1 2 4 3 4 e −23960/ RT cm 3

mol s
⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟  

a)  Use collision theory to predict a value of k o  at 600 K and compare with experimental value of 9.2 
x 109.  Assume effective collision diameter 5 x 10-8 cm. 

 

 

k o
cm 3

mol s
⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ = 4σ B

2 π RT
M B

N a e

k o = 4 x 5 x 10 −8( )2 π x 8.314 x 10 7 x 600
54

x 6.023 x 10 23 e
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k o = 8.81 x 10 14 cm 3

gmol s
⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ ← collision theory prediction

k o = 9.2 x 10 9 cm
gmol s

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
← experimental value

 
 
b)  Use transition-state theory to predict k o at 600 K and compare to experimental value.  Assume the 

following form of the transition state (a hint from a friendly chemist!) 
 '                                        ' 
 CH2 -CH=CH-CH2-CH2-CH-CH=CH2 

   

k o = e 2 k B T
h p

R'T e
∆ S p

*

R
= e 2 k B T

h p
e ∆Sc

* /R

∆ S c
* = ∆ S p

* + Rln R'T

 

 
We have to calculate the change of entropy for the formation of transition state from reactants.  To do 
this the group contribution method and appropriate tables are used.  [D.A. Hougen and K.M. Watson 
"Chemical Process Principles" Vol. II:  pp 759-764 Wiley, NY, 1947; or S.W. Benson "Thermochemical 
KInetics, 2nd ed. - Methods for the Estimation of Thermochemical Data and Rate Parameters", Wiley, 
NY 1976]. 
 
Using Benson's Tables (attached) we get for CH2=CH-CH=CH2 
 

 S ° = 2 x 27.61 + 2 x 7.97 = 71.16
cal

mol K
 

T  300  400  500  600 
Cp 18.52 22.78 26.64 30.00 

 
For CH2-CH=CH-CH2-CH2-CH-CH=CH2 
 
using the contributions of CH2  to be between those for -CH3 and -CH2 radical we get So = 110.995 
cal/mol K. 
 

T  300  400  500  600 
Cp 40.0 49.42 57.82 65.02 

 
Then 
 

 

∆ S T
* = ∆ S o

* +
∆ C p

T
T o

T

∫ d T

∆ S T
* = ∆ S o

* + 1
2

∆ C p T o( )
T o

+
∆ C p T 1( )

T 1
+

∆ C p T 2( )
T 2

+ 1
2

∆ C p T 3( )
T 3

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ ∆ T
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∆ S T
* = 110.995−2 x 71.16( ) +

1
2

40.00 − 2 x 18.52
300

+ 49.42 − 2 x 22.78
400

+

57.82 − 2 x 26.64
500

+
1
2

65.02 − 2 x 30.00
600

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

x 100 

 ∆ S T
* = − 31.325 + 2.785 = − 28.54

cal
mol K

 

 
  
k c o

= e 2 1.38062 x 10 23 x 600
6.6262 x 10 34 e

−
28.54 +1.987 ln 0.0821 x 600( )

1.987 x 10 3  

 

k c o
= 2.63 x 10 12 cm 3

gmol s
⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ ← transition state theory prediction

k c o
= 9.2 x 10 9 cm 3

gmol s
⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ ← experimental value

 

 
A closer prediction but still an upper bound.  Remember the structure of the transition state was only 
hypothesized and all thermodynamic quantities only estimated. 
   
Table 1: Some useful orders of magnitude 
Quantity Expression Order of Magnitude Units 

8k B T
π µ A B

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1/2

 5 x 104 (cm/s) mean molecular velocity 

universal frequency 
k B T
h p

 1013  (1/s) 

collision frequency gas-gas  10-10  (cm3/s - molecule) π σ AB
2 u A B

collision frequency gas-solid 
u 
4

 104  (cm/s) 

 
It is instructive to gain an insight into the order of magnitude of some important quantities by examining 
Table 1 above, and to learn a little more about the comparison in prediction of the TST and collision 
theory from Table 2. 
___________________________________________________________________________________ 
Table 2: Comparison of Theories 
Reaction Logarithm of kco 
       
  Observed Transition State  Collision  
    Theory                 Theory 
NO + O 3 → NO 2 + O 2   11.9 11.6 13.7 
NO 2 + O 3 → NO 3 + O 2   12.8 11.1 13.8 
NO 2 + F 2 → NO 2 F + F   12.2 11.1 13.8 
NO 2 + CO → NO + CO 2   13.1 12.8 13.6 
  F 2 + C lO 2 → FC lO 2 + F               10.5 10.9 13.7 
  2C lO → C l 2 + O 2     10.8 10.0 13.4 
 
Transition theory seems to give consistently better predictions. 
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6.3. Transition State Theory explained by Statistical Mechanics 
 
In this section, we will investigate the relationship between molecular level concepts and 
thermodynamic properties.  In order to be able to start looking at molecular level, we will introduce 
partition functions that describe a specific system using statistical mechanics. 
Let’s start with a few definitions.   
 
An ensemble is a collection of subsystems that make up the thermodynamic state.  Different ensembles 
are obtained depending on the intensive (e.g. temperature (T)) or extensive (e.g. volume (V)) variables 
that define the thermodynamic state.  Figure 4 shows an example of an ensemble that has 16 states.  If 
there is no material exchange between the states, composition (N) is constant for each state.  In a 
microcanonical ensemble, V, energy (E) and N are kept constant. 
 

1   NVE 2   NVE 3   NVE 4   NVE 
5   NVE 6   NVE 7   NVE 8   NVE 
9   NVE 10 NVE 11 NVE 12 NVE 
13 NVE 14 NVE 15 NVE 16 NVE 

 
FIGURE 4. An example of a microcanonical ensemble with 16 states each at   constant N, V and E 
 
Microcanonical ensemble is therefore isolated since each state is at the same energy and no energy 
transfer occurs between the states.  In a canonical ensemble, the states are not isolated and T is fixed 
instead of E.  By this way, E may be transferred as heat. 
If the states are not closed but open to material exchange and chemical potential (µ) , V and T are fixed, 
the ensemble is defined as grand canonical ensemble. 
 
Finally, the ensemble is called isothermal-isobaric for states with constant N, T, and pressure (P). 
In statistical mechanics, each ensemble can be connected to the classical thermodynamical information 
using partition functions.  The derivation for the connectivity equations are explained in detail in 
statistical mechanics books (e.g. Donald A. McQuarrie, “Statistical Mechanics”, Harper Collins 
Publishers, NY, 1976 and M.P. Allen, D.J. Tildesley, “Computer Simulation of Liquids”, Clarendon 
Press, Oxford, 1997)  Table 3 summarizes the connectivity equations between the micro-level partition 
functions and the macro-level classical thermodynamic equations. 
 
Table 3.  Connectivity equations 
  
Ensemble Thermodynamic Quantity Equation 
microcanonical S 

NVEBQkS =  
canonical A 

NVT
B

Q
Tk

A ln−=  

grand canonical pV 
VTB QTkpV µln=  

isothermal-isobaric G 
NPTB QTkG ln−=  

 
In the table Q represents the partition function for the ensemble.  (e.g. QNVE represents partition function 
for the microcanonical ensemble where N,V, and E are constant.) 
 
If the molecules that make up the system are independent of each other as in an ideal gas at the 
canonical ensemble, the partition function, Q can further be divided into individual molecular partition 
functions as: 
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!N

qQ
N

=  (23) 

 
The molecular partition function itself consists of different contributing partition functions of different 
contributing partition functions arising from different modes of motion, mainly translational, rotational, 
vibrational, electronical and nuclear. 
 
In other words, 
 
       (24) electronicnuclearlvibrationarotationalnaltranslatio qqqqqq =
 
Let’s focus on the individual contributions: 
 
Translational contribution: 
 

 
2/3

2

2
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

p

B
naltranslatio h

TmkVq π      (25) 

 
with m being the molecular mass and  being the Plank constant = 6.62608 x 10-34 Js ph
 
Rotational contribution: 

 ∑
+

−

+=
J

Tk
hcBJJ

rotational
BeJq

)1(

)12(1
σ

      (26) 

 
with J = 0,1,2,….,  
 
       σ = symmetry number, 1 for heteroatomic molecules and  2 for homoatomic molecules 
        c = speed of light 
        B = rotational constant for each molecule (cm-1) 
 
Rotational contribution is usually approximated by Eq. 27. 
 

 
hcB

Tkq B
rotational σ

≈       (27) 

 
Vibrational contribution: 
 

 Tkh

Tkh

lvibrationa B

B

e
eq ν

ν

−

−

−
=

1

2/

      (28) 

where 
πµ

ν
2
1

2/1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

k       (29) 

with k being the force constant of the molecule and µ being the reduced mass. 
 
 

16 



ChE 505 – Chapter 6N Updated 01/31/05 

Nuclear contribution: 
 

nuclearq  is taken as the degeneracy of the ground nuclear state.  It is usually omitted in the calculations 
because for most cases, nuclear state is not altered for states of interest. 
 
Electronic contribution: 
 
       (30) )(efqelectronic =
 
The electronic partition function is basically given as a function of degeneracy of the electronic ground 
state and is equal to 1 for most cases.   
 
Rate Constant Related to Molecular Partition Functions 
 
If we look at our reaction Eq (12) and express the equilibrium constant, K using partial pressures, we can 
see how molecular partition functions correlate with transition state theory. 
 

 
reac tants( )⇔ transition state( ) ⇔ products( )

A + B ⇔ Z * ⇔ Q + P
 (12)  

 
From classical thermodynamics: 
 
  (31) pVAG +=
 
Combining and keeping in mind that NTknRT B=  (32)  
 

⎟
⎠
⎞

⎜
⎝
⎛−=⎟

⎠
⎞

⎜
⎝
⎛−

=+−+−=+−−=+−=

N
qnRT

N
qTNk

nRTNNNTkqTNknRTNqNTknRT
N
qTkG

B

BBB

N

B

lnln

)ln(ln)!lnln(
!

ln
  (33) 

 
We also know that 
 
  (34) fi

s

j jr GG ∆=∆ ∑ =1
ν

 
Then combining with Eq. 33 
 

oT
i

Tifi U
N
q

RTGGG +⎟
⎠
⎞

⎜
⎝
⎛−=+=∆ ln

0
 (35) 

 
Note that we lost the n factor of Eqn (35) since G is in terms of molar quantity.  If we select our 
reference system as T = 0, then G = U.  
 
Combining Eqs (34) and (35) gives 

 

17 



ChE 505 – Chapter 6N Updated 01/31/05 

01
ln E

N
q

RTG s

j
j

r

j

∆+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=∆ ∑ =

ν

 (36) 

We also know that  
 
  (37) KRTGr ln−=∆
 
Finally we have K in terms of q by 
 

 ∏ ∆−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

j

RTEj e
N
q

K
j

/0

ν

 (38) 

 
6.4 Some Consequences of TST 
 
6.4.1 Rate Constants in Dilute Strong Electrolytes 
 
Debye-Hüchel theory relates the activity coefficient of dilute strong electrolytes with the ionic strength I 
of solution and with the charge of the ion in question: 
 

    IAZn jj
2−=γl  (39) 

 
Where 
 
  ion  of charge jZ j −

 jγ  - activity coefficient of ion 

 ∑
=

=
s

j
jj ZCI

1

2

2
1  - ionic strength (40) 

  - molar concentration of j ion jC
 - constant (A ≈ 0.51 for water at 25ºC) A
 
For reaction of 
 
 A

ZA

+ B
Z B

→ Z * (Z A +Z B )
 (41) 

 
the transition state theory predicts: 
 

 k 1c = k 1
γ A γ B

γ Z
*  (42) 

 
Clearly the transition state must have a charge of Z A + Z B  in order to satisfy the law of conservation of 
charge. 
 
Taking logarithms 
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l nk 1c = ln k 1 + ln γ A + ln γ B − ln γ Z
*

= l nk 1 − A I Z A
2 + Z B

2 − Z A + Z B( )2[ ] (43) 

l nk 1c = ln k 1 + 2 A Z A Z B I
  

  
This equation gives excellent agreement with experimental data and is very useful for correlating liquid 
phase reaction data. 
 
3.2.2  Pressure Effects in Gas Phase Reactions 
 
For gases 
  

 

a j = f j = φ j P j = γ j C j =
γ j P j

Z j RT

Z j − compressibility factor of j

γ j − activity coefficient of j

P j − partial pressure of j

C j − molar concentration of j

φ j − fugacity coefficient of j

f j − fugacity of j

 (44) 

 
From the above 
 
 γ j = φ j Z j RT  (45) 
 
For a reaction  A + B → Z *

 

 
k c = k

γ A γ B
γ Z

* = k
φ A Z A RT( )φ B Z B

φ Z Z Z

k c = k φ A φ B
φ Z

Z A Z B
Z Z

RT
 (46) 

 

At sufficiently low pressures 
φ j→ 1, Z j →1

k c
k

⎛ 
⎝ 

⎞ 
⎠ low pressure

= RT
 (47) 

 
At high pressure 
 

 
k c
k

⎛ 
⎝ 

⎞ 
⎠ high P

= RT
φ A φ B

φ Z

Z A Z B
Z Z

 (48) 
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Thus the ratio 
 

 
k c, high P
k c,low P

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ =

φ A φ B
φ Z

Z A Z B
Z Z

 (49) 

 
In the case of a reaction 2  A →
 

 
k c high P
k c low P

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ =

φ A
2

φ Z

ZZ assu ming Z A ≈ Z Z  (50) 

 
The variation of the thermodynamic properties with pressure was calculated for H I  decomposition (2 H 
I  →   I c  +  H c ).  The above equation agreed excellently with all experimental data up to 250 atm 
which led to density variations of 300. 
 
6.4.3 Dependence of Rate Constants on Temperature and  Pressure In Chain Reactions 
 
So far we have treated only simple reactions (often elementary ones) and their rate constants.  Let us 
take a look at more complex overall reactions - say in free radical polymerization: 
 

 

  

r pol = k p
k d f
k t

k
1 2 4 3 4 

CM C I  (51) 

 
using Arrhenius form for k  and each other constant  we get tdp kkk ,,
 

 
RT

EEE
fn

k
k

knkn
tdp

t

d
p

o

o

o

2
1

2
1

2
1

2/1 −+
−+

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= lll

 (52) 

 
k o = k p o

k d o

k t o

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1/2

E = E p +
1
2

E d − E t( )
 (53) 

 
Range of values     30 < E d  < 35 kcal/mol 
    
  5  < E p   <  10 kcal/mol 
    
  2  <  E t   <   5 kcal/mol 
  17 < E < 26  

  E ≈ 20
kcal
mol

 

 
Polymerization rate increases with temperature.  However the degree of polymerization X n is 
proportional to the following group that depends on temperature: 
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 X n ∝
k p

k d k t( )1/2  (54) 

 
The activation energy for the degree of polymerization is then given by 
  

 

X n = X n o
e

−
E x n

RT

E x n
= E p −

1
2

E d + E t( )
− 15 < E x n

< − 6 kcal / mol

 

 (55) 
  
 
  (56) 
 

 
Thus,  degree of polymerization decreases rapidly with increasing temperature. 
 
The dependence on pressure is 
 

 
  

d l nk
dP

=
− ∆V *

RT
 (57) 

 
∆ V *  - volume of activation,  i.e change in volume in going from reactants to transition state. 
 

 
∆ V R

* = ∆ V d
*

2
+ ∆ V P

* + ∆ V t
*

2
− 20 < ∆ V R

* < 15 cm 3/ gmol( )
 (58) 

 
Polymerization rate increases with pressure. 

 ∆V X n

* = ∆V P
* −

1
2

∆V d
* + ∆V t

*(
− 25 < ∆V X n

* < − 20 cm 3 / gmol(
)
)
 (59) 

 

Degree of polymerization increases with pressure 
 

d l n X n
d P

=
− ∆V X n

RT
 (60) 

6.5 Summary 
 
1. Temperature dependence of rate constants can be represented over a limited range of 
 temperature in a satisfactory manner by the Arrhenius equation 
 k  =  k o  e  - E / R T 
 
2. E, k o usually are constant within a narrow temperature range but may become functions of T  in a 

broader temperature range  .E ∝ α + β T,k o ∝ T m  
 
3. In case of high E  ( E >> 20,000 cal) and moderate temperatures (T  < 600 K) the value of E  is not 

affected by the choice of units for the driving force i.e C A  (mol/lit) or P A  (atm), etc. 
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4. In case of low E  ( E < 10,000 cal) and high and moderate temperatures the value of E   is greatly 
affected by the choice of variables for the driving force i.e  C  A (mol/lit) or P A (atm) etc. 

 
5. The reaction rate can increase dramatically with temperature.  The larger the E  the more rapidly 

the rate increases with T. 
 
FIGURE 5:   Effect of Temperature on the Rate Constant 
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o

 

kT

kTo

    

1
To

−
1
T

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ × 103

  ← T

E = 40,000

 

 
  kT  = rate constant at temperature   T  

  kTo
 = rate constant at        T = To = 300K = 27oC

 
The above figure (Figure 5)  demonstrates the possible rapid rise in reaction constants and rates if 
activation energy is sufficiently high. 
 
The rate increases 10 times for E   = 10,000 cal for a ∆ T   of 50K.  For the same rise in 
temperature the rate with E   = 20,000 cal will increase 100 times. 
 
It takes only 35oK to raise a rate constant 1000 times for E = 40,000.  25oK temperature increase 
gives a 1000 times larger rate for E  = 60,000 cal and a staggering 10,000 times larger rate for E = 
80,000 cal! 

 
6.   for elementary reactors.   E f − E b = ∆H o reaction
 
 For exothermic reactions ∆H ° < 0( ) 
 
 E f  < E b  and a rise in temperature will promote more the reverse reaction and thus reduce 

 equilibrium conversion.  This is obvious also from 
 

dl n K
dT

=
∆H

RT 2 < 0. 

22 



ChE 505 – Chapter 6N Updated 01/31/05 

 
  
∆H <O

d l n K
dT

< 0 asT↑ K↓.  However, forward rate rises also with T   to some extent.  

There always is a T optimal which balances the increased rate with more unfavorable equilibrium. 
 
7. For endothermic reactions E f  > E b ,  and for irreversible reactions, the higher the temperature the 

higher the rate and the higher conversion is obtainable. 
 
8. A temperature excursion of 10-20˚C can cause dramatic increases in the rate and lead to runaways 

and explosion. 
 
9. The reaction rate is so much more sensitive to temperature than to concentration.  For a first order 

reaction with E = 20,000 cal a rise of 50˚C in T   leads to an increase of 100 times in the rate.  To 
accomplish the same augmentation of the rate by changing concentrations we would have to 
increase concentration 100 times.  For a 2nd order reaction with the same activation energy we 
would have to increase concentration 10 times.  For higher activation energies the difference 
between temperature and concentration sensitivity of the rate is even more pronounced.  
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