Use the Matlab techniques we just introduced to solve these reaction engineering problems:

1. For a liquid phase reaction $A \rightarrow R$, the rate of reaction is as follows:

C _A , mol/L	-r _A , mol/L min
0.3	0.5
0.4	0.6
0.5	0.5
0.6	0.25
0.7	0.10
0.8	0.06
1.0	0.05
1.3	0.045

How long does it take for reactant A in a batch reactor to drop from 1.3mol/L to 0.3mol/L? Use Matlab numerical integration.

(For a batch reactor,
$$t = \int_{C_A}^{C_{A0}} \frac{dC_A}{-r_A}$$
)

2. Reaction $A + R \xrightarrow{k_1} R$

$$A + B \xrightarrow{k_1} R$$
$$\xrightarrow{R} + B \xrightarrow{k_2} S$$

For a batch reactor the mass balances for the components are given by

$$\frac{d[A]}{dt} = -k1 \cdot [A] \cdot [B]$$

$$\frac{d[B]}{dt} = -k1 \cdot [A] \cdot [B] - k2 \cdot [R] \cdot [B]$$

$$\frac{d[R]}{dt} = k1 \cdot [A] \cdot [B] - k2 \cdot [R] \cdot [B]$$

$$\frac{d[S]}{dt} = k2 \cdot [R] \cdot [B]$$

Given $k_1=k_2=1 \text{ m}^3/\text{mol s}$ At t=0, $[A]_0=1 \text{ mol/m}^3$, $[B]_0=2 \text{ mol/m}^3$, $[R]_0=[S]_0=0 \text{ mol/m}^3$. Solve for the concentration profiles of each component as function of time. What are the concentrations in the reactor at t=10secs?