
CSE 584A Class 5

Jeremy Buhler

February 3, 2016

1 Dictionary Matching

• Let D = {P1, P2, . . . Pk} be a dictionary of k different pattern strings.

• Problem: how fast can we find all matches to any pattern in D in a text T?

• Naively, if we search for every pattern individually, we make k passes over the text,
so cost is Θ(‖D‖+ k|T |), where ‖D‖ =

∑k
j=1 |Pj |.

• Even if we run all k KMP automata concurrently, so that we need read the text only
once, we still do Θ(k) work per character read (for real if we use the g links, or in
an amortized sense if we use the f links).

• Let’s see if we can improve on this time!

Idea: merge the various KMP automata into a single automaton that can track partial
matches to every pattern at once.

• Important assumption: no pattern in D is a substring of any other pattern (you
will fix this in your homework).

• First hack we need is a way to merge all the strings into one structure.

• For a string P , let its state sequence be the expansion of P into a path of |P | + 1
states, such that transition from ith to i+ 1st state is labeled with P [i].

• Example:

• Defn: a trie τ for a dictionary D is a tree structure obtained by constructing the
state sequences for each Pj in D and then merging their common prefixes.

• Example:

1



• A trie consists of states and edges (transitions). For state q of a trie, the label of q is
the string formed by contatenating the characters on the path from the root down
to q.

• Defn: a trie τ matches text T starting at position ` if a string T [` . . .] is the label
of some leaf state.

• There are k leaf states corresponding to the k patterns in D. We mark all leaf states
as “accepting” and annotate each with its corresponding pattern.

• We can easily turn D into a trie in total time ‖D‖:

– Start with trivial trie consisting of a single root state q0.

– For each pattern Pj , walk down the path starting at q0 that is labeled with the
characters of Pj , until we cannot continue at some state q.

– Create a new branch off of q and append the state sequence for the rest of Pj .

2 Efficient Trie Matching

Naive trie matching in a text is very similar to naive string matching: attempt to match
the trie starting at each text position. Worst-case cost is Θ(maxD |T |) comparisons, where
maxD is the length of the longest pattern in D. Can we do better?

• We can leverage principles similar to KMP to avoid redundant comparisons!

• Defn: for state q of a trie τ , let spq be the length of the longest proper suffix of the
string labeling the path from the root to q that also labels a path starting at q0.

• In other words, it’s the longest suffix-prefix match for the trie path ending at q.

• Claim: suppose we attempt to match a trie τ starting at T [1], and the attempt ter-
minates at state q (so that we cannot continue down any path without a mismatch).

• Let d(q) be the depth of q in τ (the root is depth 0). Then no match to τ occurs
starting in T [2..d(q)− spq].

• Pf : exactly analogous to proof of correctness for KMP.

2



• Note also that, as in KMP, we can skip the first spq characters after moving the trie
forward by d(q)− spq in T , because we know that they label a prefix of some path.
Matching can continue from the end of that path.

• But which path is it?

• Defn: the failure link fq is an edge pointing from state q to the state at depth spq
whose label matches the corresponding suffix of q’s label.

• If we cannot continue from state q, we resume matching from state fq.

• (If we cannot continue from the root, we stay there, so fq0 = q0.)

• As for KMP, matching in T resumes at the character that caused the mismatch, or
after that character if the mismatch was at q0. As before, on success, we resume
after the last match.

This gives us the following search algorithm:

MatchTrie(T , τ)
q ← q0
`← 1
while ` ≤ |T | do

while T [`] labels a trie edge q → q′ in τ do
q ← q′

`+ + . be sure to stop if ` reaches |T |!
if q is an accepting state for pattern Pj

emit “match to Pj ending at `”

if q = q0
`+ + . move past initial mismatch

q ← fq

• Claim: MatchTrie performs at most 2|T | reads of characters from T .

• Pf : exactly analogous to original KMP proof.

• Every mismatch takes a failure link, which moves the the trie forward in T . Hence,
at most |T | reads due to mismatches.

• Moreover, we never reread a match in T , so at most |T | matches. QED

Conclude that, once we have the trie for D, we need only 2|T | comparisons to find all
matches to D in the text, independent of k or ‖D‖!

3 Efficient Construction of Failure Links

• Procedure for constructing failure links is exactly analogous to that for KMP.

• We can use failure links for states closer to the root to derive the links for states
farther from the root.

computeF(τ)

3



fq0 ← q0
for each non-root state q of τ in breadth-first order do

r ← parent of q
c← character labeling edge r → q
r ← fr
while r 6= q0 and no trie edge out of r is labeled with c do

r ← fr

if trie edge r → r′ is labeled with c and r′ 6= q
fq ← r′

else
fq ← q0

Note the “r′ 6= q” in the last test; this is needed to handle the case that r = q0, so that
the edge r → q is labeled with c.

• Claim: given trie τ for dictionary D, can construct all failure links in worst-case
time Θ(‖D‖).

• Pf : again analogous to building failure links for KMP.

• Each state q of τ corresponds to a prefix of some pattern Pj ∈ D (perhaps more
than one pattern if we’ve merged common prefixes).

• For state q, the best suffix-prefix match interval is Pj [d(q)− spq + 1 . . . d(q)].

• When we compute fq, we try to extend the interval in Pj for q’s parent. Each time
we fail to so extend, we follow a failure link and move the start of the interval for
Pj forward by at least 1 character.

• Hence, total number of failure links followed is at most ‖D‖, the total length of all
patterns in D.

Conclude that, given dictionary D and text T , we can find all matches to D in T in total
time Θ(‖D‖+ |T |), independent of number of patterns in D.

4 Extensions

• We can define enhanced failure links gq,c just as we did for KMP to ensure that we
read each character of T only once, at the cost of increasing space and construction
time by a factor of |Σ|.

• What if some patterns in D are substrings of other patterns?

• Easy case: patterns can occur as prefixes of another pattern, but not otherwise.

• (Hint : mark the states corresponding to the ends of such patterns.)

• Hard case: patterns can occur as arbitrary substrings of another pattern.

• (Hint : you may have to emit matches to multiple strings when reaching an accepting
state! Challenge is to find and mark all accepting states while maintaining same
asymptotic construction time and space for automaton.)

4



• Note that, if one pattern can be a substring of another, the total number of matches
between D and T is no longer ≤ |T |.

• Ex: T = an, D = {a, aa, . . . am} yields Θ(mn) matches.

• Hence, we must add a term to the search cost to account for the total number of
matches emitted by the search.

With the extension to allow arbitrary substring relationships among patterns, this efficient
trie matching procedure is the well-known Aho-Corasick algorithm. It has applications to
large-scale genomics even today. For an example involving a dictionary with thousands
of patterns, see Pizzi, Rastas, and Ukkonen, “Finding significant matches of position
weight matrices in linear time”, IEEE/ACM Transactions on Computational Biology and
Bioinformatics 8:69-79, 2009.

5

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4803829
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4803829
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4803829

