This homework must be completed and submitted electronically. Formatting standards, submission procedures, and (optional) document templates for homeworks may be found at

https://classes.engineering.wustl.edu/cse584/ehomework/ehomework-guide.html

Advice on how to compose homeworks electronically, with links to relevant documentation for several different composition tools, may be found at

https://classes.engineering.wustl.edu/cse584/ehomework/composing-tips.html

Please remember to

- create a separate PDF file (typeset or scanned) for each problem;
- include any figures (typeset or hand-drawn) inline or as floats;
- upload and submit your PDFs to Blackboard before class time on the due date.

Always show your work.
1. (34%) Extend Hirschberg’s algorithm for finding an optimal global alignment of two strings in linear
space to work with affine gap penalties. Your solution should still run in time $\Theta(nm)$ for sequences of
lengths n and m. (Hint: is the score of an optimal alignment passing through cell (i,j) still the sum
of scores for optimal alignments reaching (i,j) from the two corners of the matrix?)

2. (33%) The following problem concerns generate-and-filter strategies that are guaranteed to find all
alignments with sufficiently few differences. The setting for the problem is as follows. We are given
a query sequence Q of length m and a reference sequence R of length n, and we want to find all
occurrences of Q in R with up to d differences (substitutions or indels).

(a) In class, we sketched a proof that an occurrence of Q in R with up to d differences contains a
perfect substring match of length at least $k = \lfloor m/(d+1) \rfloor$. (This was the argument that in the
worst case, the differences between Q and the approximate match in R are equally spaced along
the alignment.)
What is the false-positive rate of this heuristic, i.e. the expected number of chance occurrences of
a perfect match of length k between Q and R? Assume that Q and R are unrelated, i.i.d. random
sequences with equal base frequencies.

(b) Baeza-Yates and Perleberg gave the following method to reduce the false-positive rate in the above
comparison problem without sacrificing the guarantee of finding all (m,d)-approximate matches.
Rather than seek matches to any length-k substring of Q in R, seek only matches to substrings
$Q[jk+1..(j+1)k]$, for integers $j \geq 0$.
Prove that this revised method still finds every (m,d)-approximate match to Q in R, and compute
its false positive rate in the model of part (a). How much of an improvement is the BYP method
over naively looking for all substring matches of length k?

(c) There are many ways to improve on the false-positive rate of BYP. To give just a taste of the
possibilities, suppose $m = 24$ and $d = 1$, and suppose we want to find approximate matches of Q
in R that differ only by substitutions, not indels.
Consider the pattern $P = \text{xxxxxxx0xxxxxxx}$ of length 16. Two 16-mers are said to match under
pattern P if they agree at every position marked by an x. Positions marked by 0 are “don’t-cares,”
since we don’t care whether the strings match at that position or not.
Prove that every occurrence of the 24-mer Q in R with at most 1 mismatch contains a pair of
16-mers that match under pattern P. If we check for pattern matches starting at each possible
position in Q, what is the false-positive rate of this method in the model of part (a)? How does
it compare to the rate for the BYP method for this m and d in the limit of very large n?

Fun fact: It can be shown (!) that every occurrence of a 25-mer Q in R with up to two substitutions
must contain a pair of 23-mers that match under at least one of the following patterns:

- xx0x0xx00xxxxxxx0xxxxxx
- x0xx00xxxxxxx0xxxx0x0xx
- xxxxxxx0xxxx0xx00xxx
- xxx0xxxx0xx0xx0xxxxxxx
- xxx0x0xx00xxxxxxx0xxx
- xx00xxxxxxx0xxx0xx00x

This pattern set is one example of a large class of combinatorial designs described by Kucherov, Noé,
and Roytberg in “Multiseed lossless filtration,” IEEE Transactions on Computational Biology and
3. (33%) Consider the following all-substrings alignment problem. We are given sequences \(S[1..n]\) and \(T[1..m]\), and we want to compute a matrix \(C_{m+1 \times m+1}\), s.t. \(C_{ij}\) is the score of an optimal (global) alignment between \(S\) and \(T[i..j]\). We assume the usual alignment scoring system of \(\sigma(x, y)\) for matches and mismatches and \(-g\) for gaps.

(a) Prove the following property of \(C\): For any \(i, j > 0\),

\[
C_{i-1,j-1} + C_{i,j} - C_{i,j-1} - C_{i-1,j} \geq 0.
\]

(Hint: draw a picture of a DP matrix for aligning \(S\) and \(T\) and sketch in the four alignment paths corresponding to these four terms.)

(b) Let the density matrix \(D\) be defined by

\[
D_{i,j} = C_{i-1,j-1} + C_{i,j} - C_{i,j-1} - C_{i-1,j}.
\]

Show that given only \(D\), \(C_{0,*}\) and \(C_{*,0}\), we can reconstruct all of \(C\) in time \(O(m^2)\).

(c) Now suppose that, instead of general all-substrings alignment, we are interested only in the longest common subsequence of \(S\) with each substring of \(T\). That is, \(\sigma(x, x) = 1\), \(\sigma(x, y) = 0\) for \(x \neq y\), and \(g = 0\).

Show that for this restricted problem, the density \(D\) for the all-substrings score matrix \(C\) has at most \(m\) non-zero entries, all of which are 1. (Hint: how much can the score \(C_{i,j}\) change, and in what direction, if we make \(i\) or \(j\) one character larger?)

Fun fact: Because the density matrix in all-substrings LCS is so sparse, it is possible to compute its nonzero entries in time \(O(nm)\). By the result of part (b), we can then obtain \(C\) in time \(O(nm + m^2)\), which is much better than the \(O(nm^2)\) time you might expect for naive all-substrings alignment. This result extends to more general scoring functions, leading to efficient “core-sensitive” algorithms for all-substrings alignment.