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Abstract
Because of the high cost of communication between proces-
sors, compilers that parallelize loops automatically have 
been forced to skip a large class of loops that are both criti-
cal to performance and rich in latent parallelism. HELIX-RC 
is a compiler/microprocessor co-design that opens those 
loops to parallelization by decoupling communication from 
thread execution in conventional multicore architecures. 
Simulations of HELIX-RC, applied to a processor with 16 
Intel Atom-like cores, show an average of 6.85× performance 
speedup for six SPEC CINT2000 benchmarks.

1. INTRODUCTION
On a multicore processor, the performance of a program 
depends largely on how well it exploits parallel threads. 
Some computing problems are solved by numerical pro-
grams that are either inherently parallel or easy to parallel-
ize. Historically, successful parallelization tools have been 
able to transform the sequential loops of such programs 
into parallel form, boosting performance significantly. 
Most software, however, is still sequentially designed and 
largely non-numerical, with irregular control and data flow. 
Because manual parallelization of such software is error-
prone and time-consuming, automatic parallelization of 
non-numerical programs remains an important open 
problem.

The last decade has seen impressive steps toward a solu-
tion, but when targeting commodity processors, existing 
parallelizers still leave much of the latent parallelism in 
loops unrealized.5 The larger loops in a program can be so 
hard to analyze accurately that apparent dependences often 
flood communication channels between cores. Smaller 
loops are more amenable to accurate analysis, and our work 
shows that there is a lot of parallelism between the itera-
tions of small loops in non-numerical programs represented 
by SPECint2000 benchmarks.4 But even after intense opti-
mization, small loops typically include loop-carried depen-
dences, so their iterations cannot be entirely 
independent—they must communicate. Because the itera-
tions of a small loop are short (25 clock cycles on average for 
SPECint2000), their communications are frequent.

On commodity processors, communication relies on the 
memory system and is reactive, triggered only when one 
core asks for data from another. The resulting delay is lon-
ger than the average duration of an iteration, and it is hard 
to overlap with computation, especially when the variance 
of durations is high, as in non-numerical workloads. The 

The original paper, “HELIX-RC: An Architecture-Compiler 
Co-Design for Automatic Parallelization of Irregular 
Programs,” was published in Proceedings of the International 
Symposium on Computer Architecture, June 14–18, 2014, 
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benefits of automatic loop parallelization therefore satu-
rate at small numbers of cores for commodity processors.

Lowering the latency of inter-core communication would 
help, but it can only go so far, if communication remains 
reactive. We therefore propose a proactive solution, in which 
the compiler and an architectural extension called ring cache 
cooperate to overlap communication with computation and 
lower communication latency. The compiler identifies data 
that must be shared between cores, and the ring cache circu-
lates that data as soon as it is generated.

To demonstrate this idea, we have developed HELIX-RC, a 
co-design incorporating a parallelizing compiler and a 
simulated chip multiprocessor extended with ring cache. 
The HELIX-RC compiler builds on the original HELIX 
code parallelizer for commodity multicore processors.5 
Because it relies on invariants of the code produced by the 
compiler, ring cache is a lightweight, non-invasive exten-
sion of conventional multicore architecture. Because it 
facilitates proactive, low-latency inter-core communica-
tion, ring cache allows HELIX-RC to outperform HELIX by 
a factor of 3×.

2. OPPORTUNITIES AND CHALLENGES  
OF SMALL LOOPS
2.1. Opportunities
Prior loop parallelization techniques have avoided selecting 
loops with small bodies because communication would 
slow down execution on conventional processors.5, 20 On 
average, such techniques yield only about 60% coverage by 
parallelized loops for non-numerical programs. Excluding 
small loops limits overall speedup of such programs to less 
than 3 times no matter how many cores are available, 
because by Amdahl’s law, coverage dictates the overall 
speedup of a program through parallelization.

Because the intricacy of control and data flow scales 
down with code size, small loops are easier than larger ones 
for a compiler to analyze, which reduces the proportion of 
data dependences that must be accommodated at run time 
because of conservative assumptions about possible pointer 
aliases. As a result, the optimized bodies of small loops yield 
relatively independent iteration threads.5 So there could be 
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a significant increase in core utilization, and concomitant 
overall speedup, if the compiler were able to freely select 
small hot loops for parallelization. Realizing that potential 
requires understanding the characteristics of such loops 
and optimizing for them.

2.2. Low latency challenge
To illustrate the need for low-latency communication, 
Figure 1a plots a cumulative distribution of average itera-
tion execution times on a single Atom-like core (described in 
our work4) for the set of hot loops from SPECint2000 chosen 
for parallelization by HELIX-RC. The shaded portion of the 
plot shows that more than half of the loop iterations com-
plete within 25 clock cycles. The figure also shows the mea-
sured core-to-core round trip communication latencies for 3 
modern multicore processors. Even the shortest of these 
latencies, 75 cycles for Ivy Bridge, is too heavy a communica-
tion penalty for the majority of these short loops.

2.3. Broadcast challenge
Loops within non-numerical programs generate values that 
are consumed by later iterations, but the compiler cannot 
know which iterations will use which values. So when the 
compiler distributes the iterations of a loop to separate 
cores, shared values that result from loop-carried depen-
dences need to be accessible to any of those cores soon after 
being generated.

For loops parallelized by HELIX-RC, most communica-
tion of shared values is not between cores executing succes-
sive loop iterations, which HELIX-RC assigns to adjacent 
cores. Figure 1b charts the distribution of value communica-
tion distances (defined as the undirected distance between 
the core that produces a value and the first one that con-
sumes it) on a platform with 16 cores organized in a ring. 
Only 15% of those transfers are between adjacent cores.

Moreover, Figure 1c shows that most (86%) of the loop-car-
ried values in parallelized loops are consumed by multiple 
cores. Since consumers of shared values are not known at 
compile time, especially for non-numerical workloads, broad-
casting is the most appropriate communication protocol.

It is well known that implementing low-latency broadcast 
is challenging for a large set of cores. HELIX-RC uses a hard-
ware mechanism that achieves proactive delayed broadcast 

of data and signals to all cores in the ring for a loop. Such 
proactive communication is the cornerstone of the 
HELIX-RC approach, which allows the communication 
needed for sharing data between cores to overlap with com-
putation that the cores carry out in parallel.

3. THE HELIX-RC SOLUTION
To run the iterations of small hot loops efficiently in paral-
lel, HELIX-RC replaces communication-on-demand with 
proactive communication. It decouples value forwarding 
between threads from value consumption by the receiving 
thread. It also decouples transmission of synchronizing sig-
nals from the code that enforces sequential semantics. 
Extensions of conventional microprocessor architecture 
make this decoupling possible. Reliance on compiler-guan-
anteed machine code properties keeps those architectural 
extensions simple and efficient.

3.1. Approach
HELIX-RC is a co-design that binds its compiler (HCCv3) to a 
processor architecture enhancement called ring cache. 
When the compiler generates a set of parallel threads to run 
on separate cores, they are rarely completely independent. 
While most of each thread’s code can run concurrently with 
other threads, there are segments of that code that must 
execute in strict sequence across the thread set. We call 
these sequential segments. The main role of the ring cache is 
to accelerate the communication of values and synchroniz-
ing signals needed to implement sequential segments 
correctly.

The ring cache is a ring network linking ring nodes, each 
of which is attached to a core in the processor. During 
sequential segments, this ring serves as a distributed first-
level cache preceding the private L1 cache (Figure 2). HCCv3 
marks the entry and exit points of sequential segments 
using 2 instructions that extend the instruction set. As a 
result, each core knows whether or not it is currently execut-
ing the sequential segment of a parallel thread, and it 
accesses the cache hierarchy accordingly.
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Figure 1. Small hot loops have short iterations that send data over 
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Figure 2. The ring cache is a ring network that connects ring nodes 
attached to each core. It operates during sequential segments as 
a distributed first-level cache that precedes the private L1 cache 
(left side). Ring nodes propagate newly-generated values without 
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when needed, so wait A incurs no delay.
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Synchronization. Given the difficulty of determining 
which iteration depends on which in non-numerical pro-
grams, compilers typically make the conservative assump-
tion that an iteration depends on all of its predecessor 
iterations. Therefore, a core cannot execute sequential code 
until it is unblocked by its predecessor.5, 20 Moreover, an iter-
ation unblocks its successor only if both it and its predeces-
sors have executed this sequential segment or if they are not 
going to. This execution model leads to a chain of signal 
propagation across loop iterations that includes unneces-
sary synchronization: even if an iteration is not going to exe-
cute sequential code, it still needs to synchronize with its 
predecessor before unblocking its successor.

HELIX-RC removes this synchronization overhead by 
enabling an iteration to detect the readiness of all predeces-
sor iterations, not just one. Therefore, once an iteration for-
goes executing the sequential segment, it immediately 
notifies its successor without waiting for its predecessor. 
Unfortunately, while HELIX-RC removes unnecessary syn-
chronization, it increases the number of signals that can be 
in flight simultaneously.

HELIX-RC relies on the signal instruction to handle 
synchronization signals efficiently. Synchronization 
between a producer core and a consumer includes genera-
tion of a signal by the producer, a request for that signal by 
the consumer, and transmission of the signal between the 
two. On a conventional multicore processor that relies on a 
demand-driven memory system for communication, signal 
transmission is inherently lazy, and signal request and 
transmission become serialized. With HELIX-RC, on the 
other hand, a signal instructs the ring cache to proactively 
forward a signal to all other nodes in the ring without inter-
rupting any of the cores, thereby decoupling signal trans-
mission from synchronization.

Code example. The code in Figure 3(a), abstracted for 
clarity, represents a small hot loop from 175.vpr of SPEC 
CINT2000. It is responsible for 55% of the total execution 
time of that program. The loop body has 2 execution paths. 
The left path entails a loop-carried data dependence because 
during a typical loop iteration, instruction 1 uses the value 
of variable a produced by a previous iteration. The right path 
does not depend on prior data. Owing to complex control 
flow, the compiler cannot predict the execution path taken 
during a particular iteration, so it must assume that instruc-
tion 1 may depend on the previous iteration.

In a conventional implementation coupling communica-
tion with computation, the compiler would add wait 1 
and signal 1 instructions to the right path, as shown in 
Figure 3(a), to synchronize each iteration with its predeces-
sor and successor iterations. If shared values and signals 
were communicated on demand, the resulting sequential 
signal chain would look like that highlighted in red shown 
in Figure 3(b). If we assume that only iterations 0 and 2, run-
ning on cores 0 and 2, respectively, take the left path and 
execute instruction 1, then the sequential signal chain 
shown in Figure 3(b) is unnecessarily long, because iteration 
1 only executes parallel code, so the wait instruction is 
unnecessary in that iteration. It results in a signal stall. 
Iterations 0 and 2, in order to update a, must load its 

Compiler. HCCv3 automatically generates parallel 
threads from sequential programs by distributing succes-
sive loop iterations across adjacent cores organized as a uni-
directional ring within a single multicore processor. HCCv3 
parallelizes loops that are most likely to speed up perfor-
mance when their iterations execute in parallel. Only 1 loop 
runs in parallel at a time.

To preserve the sequential semantics of the original loop, 
the code that implements a loop-carried data dependence, 
that is, one spanning loop iterations, must run in a sequen-
tial segment whose instances in parallel threads execute in 
iteration order. Variables and other data structures involved 
in such dependences—even those normally allocated to reg-
isters in sequential code—are mapped to specially-allocated 
memory locations shared between cores. HCCv3 guarantees 
that accesses to those shared memory locations always 
occur within sequential segments.

ISA. We introduce a pair of instructions—wait and sig-
nal—that mark the beginning and end of a sequential seg-
ment. Each has an integer operand that identifies the 
particular sequential segment. A wait 3 instruction, for 
example, blocks execution of the core that issues it until all 
other cores running earlier iterations have finished execut-
ing the sequential segment labeled 3, which they signify by 
executing signal 3. Figure 2 shows a sequential segment 
with label A being executed by the core attached to the left-
most ring node. Between wait A and signal A, a store 
instruction sends the new value 5 for the shared location at 
address 0x00A to the ring node for caching and circulation 
to its successor nodes. The signal A instruction that ends 
the segment also signals subsequent nodes that the value 
generated by segment A is ready.

A core forwards all memory accesses within sequential 
segments to its local ring node. All other memory accesses 
(not within a sequential segment) go through the private L1 
cache.

Memory. Each ring node has a cache array that satisfies 
both loads and stores received from its attached core during 
a sequential segment. HELIX-RC does not require other 
changes to the existing memory hierarchy because the ring 
cache orchestrates interactions with it. To avoid any changes 
to conventional cache coherence protocols, the ring cache 
permanently maps each memory address to a unique ring 
node. All accesses from the distributed ring cache to the 
next cache level (L1) go through the associated node for a 
corresponding address.

3.2. Overlapping communication with computation
Because shared values produced by a sequential segment 
and the signal that marks its end are propagated through 
the ring node as soon as they are generated, this communi-
cation between iterations is decoupled from computation 
taking place on the cores.

Shared data communication. Once a ring node receives a 
store, it records the new value and proactively forwards its 
address and value to an adjacent node in the ring cache, all 
without interrupting the execution of the attached core. The 
value then propagates from node to node through the rest of 
the ring without interrupting the computation of any core.
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wait instructions while keeping the architectural enhance-
ment simple. Eliminating waits allows a core to execute a 
later loop iteration than its successor (significantly boost-
ing parallelism). Future iterations, however, produce sig-
nals that must be buffered. The last code property prevents 
a core from getting more than one “lap” ahead of its succes-
sor. So when buffering signals, each ring cache node only 
needs to recognize 2 types—those from the past and those 
from the future.

4.2. Code optimizations
In addition to conventional optimizations specifically tuned 
to extract Thread Level Parallelism (TLP) (e.g., code schedul-
ing, method inlining, loop unrolling), HCCv3 includes ones 
that are essential for best performance of non-numerical 
programs on a ring-cache-enhanced architecture: aggres-
sive splitting of sequential segments into smaller code 
blocks; identification and selection of small hot loops; and 
elimination of unnecessary wait instructions.

Sizing sequential segments poses a tradeoff. Additional 
segments created by splitting run in parallel with others, but 
extra segments entail extra synchronization, which adds 
communication overhead. Thanks to decoupling, HCCv3 
can split aggressively to efficiently extract TLP. Note that seg-
ments cannot be split indefinitely—each shared location 
must be accessed by only 1 segment.

To identify small hot loops that are most likely to speed 
up when their iterations run in parallel, HCCv3 profiles the 
program being compiled using representative inputs. 
Instrumentation code emulates execution with the ring 
cache during profiling, which produces an estimate of time 
saved by parallelization. Finally, HCCv3 uses a loop nesting 
graph, annotated with the profiling results, to choose the 
most promising loops.

5. ARCHITECTURE ENHANCEMENTS
Adding a ring cache to a multicore architecture enables the 
proactive circulation of data and signals that boost parallel-
ization. This section describes the design of the ring cache 
and its constituent ring nodes. The design is guided by the 
following objectives:

Low-latency communication. HELIX-RC relies on fast 
communication between cores in a multicore processor for 
synchronization and for data sharing between loop 

previous value first, using a regular load. So lazy forwarding 
of this shared data leads to data stalls, because the transfer 
only begins when demanded by a load, rather than when 
generated by a store.

In HELIX-RC, however, a wait A unblocks when all pre-
decessor iterations have signaled that segment A is fin-
ished. That allows HCCv3 to omit the wait 1 on the right 
path through the loop body. That optimization, combined 
with HELIX-RC’s proactive communication between 
cores, leads to the more efficient scenario shown in Figure 
3(c). The sequential chain in red now only includes the 
delay required to satisfy the dependence—communica-
tion updating a shared value.

4. COMPILER
The decoupled execution model of HELIX-RC described so 
far is possible given the tight co-design of the compiler and 
architecture. In this section, we focus on compiler-guaran-
teed code properties that enable a lightweight ring cache 
design, and follow up with code optimizations that make 
use of the ring cache.

4.1. Code properties

•	 Only 1 loop can run in parallel at a time. Apart from a dedi-
cated core responsible for executing code outside parallel 
loops, each core is either executing an iteration of the cur-
rent loop or waiting for the start of the next one.

•	 Successive loop iterations are distributed to threads in 
a round-robin manner. Since each thread is pinned to a 
predefined core, and cores are organized in a unidirec-
tional ring, successive iterations form a logical ring.

•	 Communication between cores executing a parallel-
ized loop occurs only within sequential segments.

•	 Different sequential segments always access different 
shared data. HCCv3 only generates multiple sequential 
segments when there is no intersection of shared data. 
Consequently, instances of distinct sequential seg-
ments may run in parallel.

•	 At most 2 signals per sequential segment emitted by a 
given core can be in flight at any time. Hence, only 2 sig-
nals per segment need to be tracked by the ring cache.

This last property allows the elimination of unnecessary 
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In addition to these router-like elements, a ring node also 
contains structures more common to caches. A set associa-
tive cache array stores all data values (and their tags) received 
by the ring node, whether from a predecessor node or from 
its associated core. The line size of this cache array is kept at 
one machine word. While the small line is contrary to typical 
cache designs, it ensures there will be no false data sharing 
by independent values from the same line.

The final structural component of the ring node is the 
signal buffer, which stores signals until they are consumed.

Node-to-node connection. The main purpose of the ring 
cache is to proactively provide many-to-many core commu-
nication in a scalable and low-latency manner. In the unidi-
rectional ring formed by the ring nodes, data propagates by 
value circulation. Once a ring node receives an (address, 
value) pair, either from its predecessor, or from its associ-
ated core, it stores a local copy in its cache array and propa-
gates the same pair to its successor node. The pair eventually 
propagates through the entire ring (stopping after a full 
cycle) so that any core can consume the data value from its 
local ring node, as needed.

This value circulation mechanism allows the ring cache 
to communicate between cores faster than reactive systems 
(like most coherent cache hierarchies). In a reactive system, 
data transfer begins once the receiver requests the shared 
data, which adds transfer latency to an already latency-criti-
cal code path. In contrast, a proactive scheme overlaps 
transfer latencies with computation to lower the receiver’s 
perceived latency.

The ring cache prioritizes the common case, where data 
generated within sequential segments must propagate to all 
other nodes as quickly as possible. Assuming no contention 
over the network and single-cycle node-to-node latency, the 
design shown in Figure 4 allows us to bound the latency for 
a full trip around the ring to N clock cycles, where N is the 
number of cores. Each ring node prioritizes data received 
from the ring and stalls injection from its local core.

To eliminate delays to forward data between ring nodes, 
the number of write ports in each node’s cache array must 
match the link bandwidth between two nodes. While this 
may seem like an onerous design constraint for the cache 
array, Section 6 shows that just one write port is sufficient to 
reap more than 99% of the ideal-case benefits.

iterations. Since low-latency communication is possible 
between physically adjacent cores in modern processors, 
the ring cache implements a simple unidirectional ring 
network.

Caching shared values. A compiler cannot easily guaran-
tee whether and when shared data generated by a loop itera-
tion will be consumed by other cores running subsequent 
iterations. Hence, the ring cache must cache shared data. 
Keeping shared data on local ring nodes provides quick 
access for the associated cores. As with data, it is also impor-
tant to buffer signals in each ring node for immediate 
consumption.

Easy integration. The ring cache is a minimally-invasive 
extension to existing multicore systems, easy to adopt and 
integrate. It does not require modifications to the existing 
memory hierarchy or to cache coherence protocols.

With these objectives in mind, we now describe the inter-
nals of the ring cache and its interaction with the rest of the 
architecture.

5.1. Ring cache architecture
The ring cache architecture relies on properties of compiled 
code, which imply that the data involved in timing-critical 
dependences that potentially limit overall performance are 
both produced and consumed in the same order as loop iter-
ations. Furthermore, a ring network topology captures this 
data flow, as sketched in Figure 4. The following paragraphs 
describe the structure and purpose of each ring cache 
component.

Ring node structure. The internal structure of a per-core 
ring node is shown in the right half of Figure 4. Parts of this 
structure resemble a simple network router. Unidirectional 
links connect a node to its two neighbors to form the ring 
backbone. Bidirectional connections to the core and private 
L1 cache allow injection of data into and extraction of data 
from the ring. There are 3 separate sets of data links and buf-
fers. A primary set forwards data and signals between cores. 
Two other sets manage infrequent traffic for integration 
with the rest of the memory hierarchy (see Section 5.2). 
Separating these 3 traffic types simplifies the design and 
avoids deadlock. Finally, signals move in lockstep with for-
warded data to ensure that a shared memory location is not 
accessed before the data arrives.
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Figure 4. Ring cache architecture overview. From left to right: overall system; single core slice; ring node internal structure.
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cache meets this requirement by leveraging the unidirec-
tional data flow guaranteed by the compiler. Sequential con-
sistency must be preserved when ring cache values reach 
lower-level caches, but the consistency model provided by 
conventional memory hierarchies is weaker. We resolve this 
difference by introducing a single serialization point per 
memory location, namely a unique owner node responsible 
for all interactions with the rest of the memory hierarchy. 
When a shared value is moved between the ring cache and 
L1 caches (owing to occasional ring cache load misses and 
evictions), only its owner node can perform the required L1 
cache accesses. This solution preserves existing consistency 
models with minimal impact on performance.

Cache flush. Finally, to guarantee coherence between 
parallelized loops and serial code between loop invocations, 
each ring node flushes the dirty values of memory locations 
it owns to L1 once a parallel loop has finished execution. 
This is equivalent to executing a distributed fence at the end 
of loops. In a multiprogram scenario, signal buffers must 
also be flushed/restored at program context switches.

6. EVALUATIONb

By co-designing the compiler along with the architecture, 
HELIX-RC more than triples the performance of parallelized 
code when compared to a compiler-only solution. This sec-
tion investigates HELIX-RC’s performance benefits and 
their sensitivity to ring cache parameters. We confirm that 
the majority of speedups come from decoupling all types of 
communication and synchronization. We conclude by ana-
lyzing the remaining overheads of the execution model.

6.1. Experimental setup
We ran experiments on 2 sets of architectures. The first 
relies on a conventional memory hierarchy to share data 
among the cores. The second relies on the ring cache.

Simulated conventional hardware. We simulate a multi-
core in-order ×86 processor by adding multiple-core support 
to the XIOSim simulator. We also simulate out-of-order 
cores modeled after Intel Nehalem.

The simulated cache hierarchy has 2 levels: a per-core 
32 KB, 8-way associative L1 cache and a shared 8 MB 16-bank 
L2 cache. We vary the core count from 1 to 16, but do not vary 
the amount of L2 cache with the number of cores, keeping it 
at 8 MB for all configurations. Also scaling cache size would 
make it difficult to distinguish the benefits of parallelizing a 
workload from the benefits of fitting its working set into the 
larger cache, causing misleading results. Finally, we use 
DRAMSim2 for cycle-accurate simulation of memory con-
trollers and DRAM.

We extended XIOSim with a cache coherence protocol 
assuming an optimistic cache-to-cache latency of 10 clock 
cycles. This 10-cycle latency is optimistically low even com-
pared to research prototypes of low-latency coherence.11 We 
only use this low-latency model to simulate conventional 
hardware, and later (Section 6.2) shows that low latency 
alone is not enough to compensate for the lazy nature of its 

To ensure correctness under network contention, the 
ring cache is sometimes forced to stall all messages (data 
and signals) traveling along the ring. The only events that 
can cause contention and stalls are ring cache misses and 
evictions, which may then need to fetch data from a remote 
L1 cache. While these ring stalls are necessary to guarantee 
correctness, they are infrequent.

The ring cache relies on credit-based flow control9 and is 
deadlock free. Each ring node has at least two buffers 
attached to the incoming links to guarantee forward prog-
ress. The network maintains the invariant that there is 
always at least one empty buffer per set of links somewhere 
in the ring. That is why a node only injects new data from its 
associated core into the ring when there is no data from a 
predecessor node to forward.

Node-core integration. Ring nodes are connected to their 
respective cores as the closest level in the cache hierarchy 
(Figure 4). The core’s interface to the ring cache is through 
regular loads and stores for memory accesses in sequential 
segments.

As previously discussed, wait and signal instructions 
delineate code within a sequential segment. A thread that 
needs to enter a sequential segment first executes a wait, 
which only returns from the associated ring node when 
matching signals have been received from all other cores 
executing prior loop iterations. The signal buffer within the 
ring node enforces this. Specialized core logic detects the 
start of the sequential segment and routes memory opera-
tions to the ring cache. Finally, executing the corresponding 
signal marks the end of the sequential segment.

The wait and signal instructions require special treat-
ment in out-of-order cores. Since they may have system-wide 
side effects, these instructions must issue non-speculatively 
from the core’s store queue and regular loads and stores 
cannot be reordered around them. Our implementation 
reuses logic from load-store queues for memory disambigu-
ation and holds a lightweight local fence in the load queue 
until the wait returns to the senior store queue. This is not 
a concern for in-order cores.

5.2. Memory hierarchy integrationa

The ring cache is a level within the cache hierarchy and as 
such must not break any consistency guarantees that the 
hierarchy normally provides. Consistency between the ring 
cache and the conventional memory hierarchy results from 
the following invariants: (i) shared memory can only be 
accessed within sequential segments through the ring cache 
(compiler-enforced); (ii) only a uniquely assigned owner node 
can read or write a particular shared memory location 
through the L1 cache on a ring cache miss (ring cache-
enforced); and (iii) the cache coherence protocol preserves 
the order of stores to a memory location through a particular 
L1 cache.

Sequential consistency. To preserve the semantics of a 
parallelized single-threaded program, memory operations 
on shared values require sequential consistency. The ring 

a  This feature may add one multiplexer delay to the critical delay path from  
the core to L1.

b  Most cache coherence protocols (including Intel, AMD, and ARM implemen-
tations) provide this minimum guarantee.
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but also increases the geometric mean of speedups for 
CFP2000 benchmarks from 11.4× to almost 12×.

We now turn our attention to understanding where the 
speedups come from.

Communication. Speedups obtained by HELIX-RC come 
from decoupling both synchronization and data communi-
cation from computation in loop iterations, which signifi-
cantly reduces communication overhead, allows the 
compiler to split sequential segments into smaller blocks, 
and cuts down the critical path of the generated parallel 
code. Figure 6 compares the speedups gained by multiple 
combinations of decoupling synchronization, register-, and 
memory-based communication. As expected, fast register 
transfers alone do not provide much speedup since most in-
register dependences can be satisfied by re-computing the 
shared variables involved.4 Instead, most of the speedups 
come from decoupling communication for both synchroni-
zation and memory-carried actual dependences. To the best 
of our knowledge, HELIX-RC is the only solution that accel-
erates all 3 types of transfers for actual dependences.

coherence protocol.
Simulated ring cache. We extended XIOSim to simulate 

the ring cache as described in Section 5. We used the follow-
ing configuration: a 1 KB 8-way associative array size, one-word 
data bandwidth, five-signal bandwidth, single-cycle adja-
cent core latency, and two cycles of core-to-ring-node injec-
tion latency to minimally impact the already delay-critical 
path from the core to the L1 cache. A sensitiviy analysis of 
these parameters as well as the evaluation of the ring cache 
in out-of-order cores can be found in.4 We use a simple bit 
mask as the hash function to distribute memory addresses 
to their owner nodes. To avoid triggering the cache coher-
ence protocol, all words of a cache line have the same owner. 
Lastly, XIOSim simulates changes made to the core to route 
memory accesses either to the attached ring node or to the 
private L1.

Benchmarks. We use 10 out of the 15 C benchmarks from 
the SPEC CPU2000 suite: 4 floating point (CFP2000) and 6 
integer benchmarks (CINT2000). For engineering reasons, 
the data dependence analysis that HCCv3 relies on4 requires 
either too much memory or too much time to handle the 
rest. This limitation is orthogonal to the results described in 
this paper.

Compiler. We extended the Intermediate Language 
Distributed Just-In-Time (ILDJIT) compilation framework,3 
version 1.1, to use LLVM 3.0 for backend machine code gen-
eration. We generated both single- and multi-threaded ver-
sions of the benchmarks. The single-threaded programs are 
the unmodified versions of benchmarks, optimized (O3) and 
generated by LLVM. This code outperforms GCC 4.8.1 by 8% 
on average and under-performs ICC 14.0.0 by 1.9%. The 
multi-threaded programs were generated by HCCv3 and the 
HELIX compiler (i.e., compiler-only solution) to run on ring-
cache-enhanced and conventional architectures, respec-
tively. Both compilers produce code automatically and do 
not require any human intervention. During compilation, 
they use SPEC training inputs to select the loops to 
parallelize.

Measuring performance. We compute speedups relative 
to sequential simulation. Both single- and multi-threaded 
runs use reference inputs. To make simulation feasible, we 
simulate multiple phases of 100 M instructions as identified 
by SimPoint.

6.2. Speedup analysisc

In our 16-core processor evaluation system, HELIX-RC 
boosts the performance of sequentially-designed programs 
(CINT2000), assumed not to be amenable to parallelization. 
Figure 5 shows that HELIX-RC raises the geometric mean of 
speedups for these benchmarks from 2.2× for a compiler-
only solution to 6.85×.

HELIX-RC not only maintains the performance of a com-
piler-only solution on numerical programs (SPEC CFP2000), 

Figure 5. HELIX-RC triples the speedup obtained by a compiler-
only solution for SPEC INT benchmarks. Speedups are relative to 
sequential program execution.
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Figure 6. Breakdown of benefits of decoupling communication from 
computation.

c  As an aside, automatic parallelization features of ICC led to a geomean 
slowdown of 2.6% across SPEC CINT2000 benchmarks, suggesting ICC 
cannot parallelize non-numerical programs.
These speedups are possible even with a cache coherence latency of convention-
al processors (e.g., 75 cycles).
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iteration count (ranging from 8 to 20) leads to idle cores. 
Other benchmarks such as 164.gzip, 197.parser, 181.mcf, and 
188.ammp suffer from dependence waiting due to large 
sequential segments. Finally, HCCv3 must sometimes add a 
large number of wait and signal instructions (i.e., many 
sequential segments) to increase TLP, as seen for 164.gzip, 
197.parser, 181.mcf, and 256.bzip2.

7. RELATED WORK
To compare HELIX-RC to a broad set of related work, Table 1  
summarizes different parallelization schemes proposed for 
non-numerical programs organized with respect to the types 
of communication decoupling implemented (register vs. 
memory) and the types of dependences targeted (actual vs. 
false). HELIX-RC covers the entire design space and is the 
only one to decouple memory accesses from computation 
for actual dependences.

7.1. Multiscalar register file
Multiscalar processors19 extract both Instruction Level 
Parallelism (ILP) and TLP from an ordinary application. 
While a ring cache’s structure resembles a Multiscalar regis-
ter file, there are fundamental differences. For the Multiscalar 
register file, there is a fixed and relatively small number of 
shared elements that must be known at compile time. 
Furthermore, the Multiscalar register file cannot handle 
memory updates by simply mapping memory to a fixed num-
ber registers without a replacement mechanism. In contrast, 
the ring cache does not require compile-time knowledge to 
handle an arbitrary number of elements shared between 
cores (i.e., memory locations allocated at runtime) and can 
readily handle register updates by deallocating a register to a 
memory location. In other words, HELIX-RC proposes to use 
a distributed cache to handle both register and memory 
updates.

7.2. Cache coherence protocols
The ring cache addresses an entirely different set of commu-
nication demands. Cache coherence protocols target rela-
tively small amounts of data shared infrequently between 
cores. Hence, cores can communicate lazily, but the result-
ing communication almost always lies in the critical sequen-
tial chain. In contrast, the ring cache targets frequent and 
time-critical data sharing between cores.

7.3. On-chip networks

Sequential segments. While more splitting offers higher 
TLP (more sequential segments can run in parallel), it also 
requires more synchronization at run time. Hence, the high 
synchronization cost for conventional multicores discour-
ages aggressive splitting of sequential segments. In con-
trast, the ring cache enables aggressive splitting to maximize 
TLP.

To analyze the relationship between splitting and TLP, 
we computed the number of instructions that execute con-
currently for the following 2 scenarios: (i) conservative 
splitting constrained by a contemporary multicore proces-
sor with high synchronization penalty (100 cycles) and (ii) 
aggressive splitting for HELIX-RC with low-latency com-
munication (<10 cycles) provided by the ring cache. In 
order to compute TLP independent of both the communi-
cation overhead and core pipeline advantages, we used a 
simple abstracted model of a multicore system that has no 
communication cost and is able to execute 1 instruction at 
a time. Using the same set of loops chosen by HELIX-RC 
and used in Figure 5, TLP increased from 6.4 to 14.2 
instructions with aggressive splitting. Moreover, the aver-
age number of instructions per sequential segment 
dropped from 8.5 to 3.2 instructions.

Coverage. Despite all the loop-level speedups possible via 
decoupling communication and aggressively splitting of 
sequential segments, Amdahl’s law states that program cov-
erage dictates the overall speedup of a program. Prior paral-
lelization techniques have avoided selecting loops with small 
bodies because communication would slow down execution 
on conventional processors.5, 20 Since HELIX-RC does not suf-
fer from this problem, the compiler can freely select small 
hot loops to cover almost the entirety of the original 
program.

6.3. Analysis of overhead
To understand areas for improvement, we categorize every 
overhead cycle preventing ideal speedup. Figure 7 shows the 
results of this categorization for HELIX-RC, again imple-
mented on a 16-core processor.

Most importantly, the small fraction of communication 
overheads suggests that HELIX-RC successfully eliminates 
the core-to-core latency for data transfer in most bench-
marks. For several benchmarks, notably 175.vpr, 300.twolf, 
256.bzip2, and 179.art, the major source of overhead is the 
low number of iterations per parallelized loop (low trip 
count). While many hot loops are frequently invoked, low 

Figure 7. Breakdown of overheads that prevent achieving ideal speedup.
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code can sometimes be slower than the original. Moreover, 
DSWP faces the challenges of selecting appropriate loops to 
parallelize and keeping the pipeline balanced at runtime. 
While DSWP-based approaches focus more on restructuring 
loops to hide communication latency,8, 13 HELIX-RC pro-
poses an architecture-compiler co-design strategy that 
selects the most appropriate loops for parallelization.

Combining DSWP with HELIX-RC has the potential to 
yield significantly better performance than either alone. 
DSWP cannot easily scale beyond 4 cores14 without being 
combined with approaches that exploit parallelism among 
loop iterations (e.g., DOALL).8 While DSWP + DOALL can scale 
beyond several cores, DOALL parallelism is not easy to find in 
non-numerical code. Instead, DSWP + HELIX-RC presents an 
opportunity to parallelize a much broader set of loops.

Several TLS-based techniques,7, 10, 20 including Stanford 
Hydra, POSH, and STAMPede, combine hardware-assisted 
Thread Level Speculation (TLS) with compiler optimizations 
to manage dependences between loop iterations executing 
in different threads. When the compiler identifies sources 
and destinations of frequent dependences, it synchronizes 
using wait and signal primitives; otherwise, it uses specu-
lation. HELIX-RC, on the other hand, optimizes code assum-
ing all dependences are actual. While we believe adding 
speculation may help HELIX-RC, Figure 5 shows decoupled 
communication already yields significant speedups without 
misspeculation overheads.

8. CONCLUSION
HELIX-RC shows how to accelerate non-numerical programs 
by exploiting parallelism between the iterations of their 
small loops. Successfully mapping the iterations of such 
loops onto multiple cores of a single chip requires a low-
latency, broadcast interconnect between cores. This inter-
connect needs to be proactive (so that communication starts 
as soon as data is generated), and it must be able to update 
memory locations stored in each core’s private cache.

8.1. Accelerating non-numerical programs to  
catch up with hardware evolution
Adding multiple cores to a single chip has been proposed, 
studied, and realized in products since the 90’s (Ref. 
Olukotun et al.12), but the majority of these cores are still 
under-utilized even after more than 15 years’ effort in both 
compiler and programming language research. Having 
reached the “ILP wall,” industry now relies on these multi-
ple cores to gain performance from each system. However, 
successful uses of multiple cores exist only when the goal is 
maximizing throughput combined with massive data paral-
lelism or parallelism among multiple programs, as is avail-
able in Graphics Processing Unit (GPU) computing or within 
data centers. On the other hand, if single program perfor-
mance is the target and there is little or no data parallelism 
available (e.g., non-numerical programs running on mobile 
phones or client computers), then only a few cores are actu-
ally used, leaving the majority of them under-utilized.1 Our 
work shows how to actually take advantage of the cores that 
are available within a single chip when running non-numer-
ical programs, highlighting the great potential of including 

While On-Chip-Networks (OCNs) can take several forms, 
they commonly implement reactive coherence protocols18, 21, 

24, 25 that do not fulfill the low-latency communication 
requirements of HELIX-RC. Scalar operand networks22 
somewhat resemble a ring cache to enable tight coupling 
between known producers and consumers of specific oper-
ands, but they suffer from the same limitations as the 
Multiscalar register file. Hence, HELIX-RC implements a 
relatively simple OCN, but supported by compiler guaran-
tees and additional logic to implement automatic 
forwarding.

7.4. Off-chip networks
Networks that improve bandwidth between processors have 
been studied extensively.17 While they work well for Cyclic 
Multithreading (CMT) parallelization techniques that 
require less frequent data sharing, there is less overall paral-
lelism. Moreover, networks that target chip-to-chip commu-
nication do not meet the very different low-latency 
core-to-core communication demands of HELIX-RC.9 Our 
results show HELIX-RC is much more sensitive to latency 
than to bandwidth.

7.5. Non-commodity processors
Multiscalar,19 TRIPS,16 and T3 (Ref. Robatmil et al.15) are 
polymorphous architectures that target parallelism at dif-
ferent granularities. They differ from HELIX-RC in that (i) 
they require a significantly larger design effort and (ii) they 
only decouple register-to-register communication and/or 
false memory dependence communication by speculating.

An iWarp system2 implements special-purpose arrays 
that execute fine- and coarse-grained parallel numerical 
programs. However, without an efficient broadcast mecha-
nism, iWarp’s fast communication cannot reach the speed-
ups offered by HELIX-RC.

7.6. Automatic parallelization  
of non-numerical programs
Several automatic methods to extract TLP have demon-
strated respectable speedups on commodity multicore pro-
cessors for non-numerical programs.5, 8, 13, 23 All of these 
methods transform loops into parallel threads. Decoupled 
Software Pipelining (DSWP)13 reduces sensitivity to commu-
nication latency by restructuring a loop to create a pipeline 
among the extracted threads with unidirectional communi-
cation between pipeline stages. Demonstrated both on sim-
ulators and on real systems, DSWP performance is largely 
insensitive to latency. However, significant restructuring of 
the loop makes speedups difficult to predict and generated 

Table 1. Only HELIX-RC decouples communication for all types of 
dependences.

 Actual dependences False dependences

Register HELIX-RC, Multiscalar, 
TRIPS, T3

HELIX-RC, Multiscalar, TRIPS, T3

Memory HELIX-RC HELIX-RC, TLS-based approaches, 
Multiscalar, TRIPS, T3
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hardware support for a proactive, cache-based, low-latency 
core-to-core interconnect.

8.2. Transforming parallelism into performance 
requires low-latency communication
Our work demonstrates the fundamental value of having a 
low-latency interconnect to boost the performance of com-
plex, non-numerical programs. The dependence between 
communication latency and performance of a program has 
already been observed in high-performance computing 
domains.17 Moreover, prior work on on-chip networks has 
shown the value of a low-latency interconnect both for pro-
grams with regular control and data flows22, 25 and for a novel 
research architecture.6, 21 Our work is the first to demon-
strate the value of a cache-based, low latency interconnect 
between cores of commodity processors for accelerating 
complex, non-numerical programs running on a chip.

8.3. From reactive hardware-driven to proactive 
software-driven cache communication
HELIX-RC has the potential to influence the adoption of 
proactive, cache-based, and one-to-many interconnects in 
commodity processors. To quantify the need for such solu-
tions, we measured the communication latency between 
adjacent cores in several generations of Intel commodity 
processors. As highlighted in Figure 1a, conventional reac-
tive solutions have latencies of around 100 cycles. The figure 
shows that, among the five generations of Intel processors 
we considered, adjacent core latency bounces around 100 
cycles without a monotonic trend over time. This suggests 
that there is no reason to expect conventional solutions 
(reactive hardware-driven) to improve in the future.

HELIX-RC motivates shifting inter-core communication 
mechanisms towards alternative cache-based solutions, in 
which a compiler identifies for the hardware the code that will 
generate shared data. The architecture, for its part, will proac-
tively communicate modified values to make them locally 
accessible by other cores. This allows a drastic cut in the 
latency of remote data access, which, therefore, allows a par-
allelizing compiler to take advantage of the substantial latent 
parallelism between the iterations of small loops.�
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