
Rapid RNA Folding: Analysis and Acceleration
of the Zuker Recurrence

Arpith C. Jacob
Jeremy D. Buhler
Roger D. Chamberlain

Arpith C. Jacob, Jeremy D. Buhler, and Roger D. Chamberlain, “Rapid
RNA Folding: Analysis and Acceleration of the Zuker Recurrence,” in
Proc. of 18th IEEE Annual International Symposium on Field-
Programmable Custom Computing Machines, May 2010, pp. 87-94.

Dept. of Computer Science and Engineering
Washington University in St. Louis

Rapid RNA Folding: Analysis and Acceleration of the Zuker Recurrence

Arpith C. Jacob∗, Jeremy D. Buhler∗, and Roger D. Chamberlain∗†
∗Department of Computer Science and Engineering, Washington University in St. Louis

†BECS Technology, Inc., St. Louis, Missouri
Email: {jarpith,jbuhler,roger}@wustl.edu

Abstract—RNA folding is a compute-intensive task that lies
at the core of search applications in bioinformatics such as
RNAfold and UNAFold. In this work, we analyze the Zuker
RNA folding algorithm, which is challenging to accelerate
because it is resource intensive and has a large number of
variable-length dependencies. We use a technique of Lyngsø to
rewrite the recurrence in a form that makes polyhedral analysis
more effective and use data pipelining and tiling to generate a
hardware-friendly implementation. Compared to earlier work,
processors in our array are more efficient and use fewer logic
and memory resources.

We implemented our array on a Xilinx Virtex 4 LX100-
12 FPGA and experimentally verified a 103× speedup over a
single core of a 3 GHz Intel Core 2 Duo CPU. The accelerator
is also 17× faster than a recent Zuker implementation on a
Virtex 4 LX200-11 FPGA and 12× and 6× faster respectively
than an Nvidia Tesla C870 and GTX280 GPU. We conclude
with a number of lessons in using FPGAs to implement
arrays after polyhedral analysis. We advocate using polyhedral
analysis to accelerate other dynamic programming recurrences
in computational biology.

Keywords-RNA secondary structure; Zuker; polyhedral
model; FPGA

An RNA is a single-stranded molecule that may be
represented by a linear sequence of nucleic acids, or bases,
from the alphabet {A,C,G,U}. RNAs implement diverse
functions in organisms, including initiation of translation,
catalysis of reactions, regulation of genes, and targeted sup-
pression of transcription and translation. An RNA’s function
is determined by the shape it folds into as complementary
bases on the sequence pair up (mostly A-U and C-G) to
form its so-called secondary structure.

Since the experimental determination of an RNA’s sec-
ondary structure is time-consuming, biologists use computer
programs to predict the structure of single RNA molecules.
These algorithms find a folded structure with minimum free
energy using empirical models. The first such algorithm was
due to Nussinov [1]; it finds a structure with the largest
number of base pairs. The Zuker dynamic programming
algorithm [2] predicts the structure using more detailed and
accurate energy models. Figure 1 shows a folded RNA
molecule, highlighting the types of structural features that
are explicitly modeled by the Zuker algorithm.

Biologists generally fold RNAs of only a few hundred
bases because the structure of large molecules cannot be
predicted accurately using pure folding approaches. How-
ever, many important applications, including RNA motif

1

1
1

2
3

47

6
8

7
8

127

G

G

C

C

G

G

C

C

C

A

G

GCGGGG

U C C C G U

U
C

C
C

G

G

G

C
G

C

C

C G C
G C G U U C C A G

CUGGAGUGU
GCG

U
G

G
G

A

C

U

G

G

G

C

C

G

G

C

C

A

A

A

A

A

A

A

C
G

C
G

A
C

A
C

C C
A

A

A

C
A C

A

G A
U

A

A

C A

C G
A

G

UA

A

A
C

CU
C

A

A
A

A

A

A

A

A

A

A

Figure 1. An example of an RNA folded into its secondary structure
with free energy -53.90 kcal/mol. Types of structural features modeled by
the Zuker folding algorithm include: dangling ends (1), internal loop (11),
stack (23), multi loop (47), bulge (68) and hairpin loop (78).

finding [3] and the search for functional RNAs in genomic
DNA [4], may fold millions of short RNAs. Folding al-
gorithms require time at least cubic in the length of the
sequence, so high-throughput folding is a major compu-
tational challenge. Consequently, researchers have paral-
lelized folding algorithms using both multi-core general-
purpose processors [5] and specialized architectures on
Field-Programmable Gate Arrays (FPGAs) [6] and Graphics
Processing Units (GPUs) [7].

This work makes two main contributions. First, we an-
alyze the Zuker algorithm to build an application-specific
FPGA accelerator. Our experiments show that we are able
to fold RNAs of length 273 bases on a Xilinx Virtex 4
LX100-12 FPGA 103× faster than a single core of a 3 GHz
Intel Core 2 Duo processor. Our array is also an order of
magnitude faster than existing FPGA and GPU accelerators
built with the same generation of process technology.

Second, our Zuker implementation illustrates use of the
polyhedral model [8] to analyze dynamic programming al-
gorithms in computational biology. This model is a powerful
theoretical framework that can represent and analyze regular
loop programs with static dependencies. Loop transforma-
tions such as interchange, skewing, unrolling, and tiling can

2010 18th IEEE Annual International Symposium on Field-Programmable Custom Computing Machines

978-0-7695-4056-6/10 $26.00 © 2010 IEEE

DOI 10.1109/FCCM.2010.22

87

be investigated systematically to expose far more parallelism
than ad hoc methods.

Many important algorithms in computational biology
implement compute-intensive dynamic programming recur-
rences that can be analyzed with the polyhedral model.
Examples include Smith-Waterman pairwise sequence align-
ment and motif search with profile hidden Markov mod-
els. Derrien and Quinton [9] used polyhedral methods to
powerful effect in building a hardware array for the latter
task that outperformed arrays built using extant approaches.
However, both these algorithms have only quadratic runtime,
use simpler dependence structures, and exhibit more regular
computations in the loop body than does Zuker.

Based on our experience with the Zuker algorithm, we
outline general techniques useful for synthesis of efficient
FPGA-based accelerators after polyhedral analysis. We be-
lieve our approach holds promise in speeding up the many
data- and compute-intensive dynamic programming algo-
rithms in computational biology.

I. THE ZUKER RECURRENCE

We now describe a simplified version of the RNA fold-
ing algorithm implemented in the Vienna RNA [10] and
UNAFold [11] packages. We have omitted some details for
brevity, including modeling special-case loops and dangling
ends. Our accelerator, however, implements these compu-
tations and yields results identical to the fill_arrays
function of Vienna RNA version 1.8.4.

Given a sequence S of length N , the Zuker algorithm
recursively computes three data variables W , V , and VBI
defined over the domain D = { 1 ≤ i ≤ N ; i ≤ j ≤ N }.
Supporting energy functions computed via table lookup are
shown in lower case.

W (i, j) = min

W (i+ 1, j) + b
W (i, j − 1) + b
V (i, j) + δ(Si, Sj)
min

i<k<j
{W (i, k) +W (k + 1, j)}

(1)

V (i, j) = min

∞ if (Si, Sj) is not a base pair

eh(i, j) otherwise
V (i+ 1, j − 1) + es(i, j)
VBI (i, j)

min
i<k<j−1

{W (i+ 1, k) +W (k + 1, j − 1)}+ c

(2)

VBI (i, j) = min
i<i′<j′<j

{ V (i
′
, j
′
) + ebi(i, j, i

′
, j
′
) }. (3)

V (i, j) is the energy of the optimal structure formed by
subsequence Si...j , closed by the base pair (Si, Sj). The two
bases at i and j may close a hairpin loop (eh), form part
of a stack (es), close an internal loop or bulge (VBI), or
be part of a multi loop (W). See Figure 1 for examples of
these features. The most likely scenario is selected using the
minimization operation in Equation 2. If these two bases do
not pair, however, the energy score is set to infinity.

Equation 3 calculates the scores of internal loops and
bulges and is subject to the constraint i′ − i + j − j′ > 2.

i

j

VBI

V

W i , j

30

1 j - 1

N

i+1

W(i, k-1)

W(k , j)

V(i', j')

Figure 2. Long-range dependencies for the cell (i, j).

This equation also determines the time complexity of the
algorithm, which is quartic in the length of the sequence.
However, large internal loops are uncommon in nature, so
implementations of Zuker sacrifice accuracy for speed by
limiting the size of internal loops to at most 30, reducing
the overall time complexity to Θ(N3), albeit with a large
constant factor.

The computation domain for the recurrences is a triangle,
as shown in Figure 2. Long-range dependencies of the en-
larged cell (i, j) are depicted in dashed boxes. Dependencies
for VBI are in the bold triangle, whose base and height are
each at most 30 cells. Note that all cells (i, j) on a given anti-
diagonal line j − i = constant can be computed in parallel.

Finally, the minimum free energy F (j) of the folded RNA
subsequence 1 . . . j is given by

F (j) = min

{
F (j − 1)
min

1≤i<j
{V (i, j) + F (i− 1)}. (4)

F (N) is then the free-energy score of the entire molecule.
We can perform a traceback procedure on this recurrence to
find the optimal structure; this traceback requires negligible
compute resources, so we do not accelerate it here.

II. RELATED WORK

Recently, significant effort has been spent in accelerat-
ing the Zuker algorithm on multi-core processors, graphics
accelerators, and FPGAs.

GTfold [5] is an OpenMP shared memory implementation
of Zuker on an IBM P5-570 server with 16 dual-core 1.9
GHz CPUs. GTfold is able to fold an RNA of length 9781
bases 19× faster than a sequential implementation. The time
to fold 11 RNAs, each over 7000 bases, was reduced from
about 3 months to under 9 minutes. The weakness of this
approach is that the sequences must be large enough that the
communication time between cores is minimal compared
to the computation time. For short sequences of a few

88

hundred bases, which encompass the majority of biologists’
workload, there is too little work to distribute among the 32
cores. Modern RNA folding algorithms have poor accuracy
when the sequence is larger than 100-200 bases [12] and
are considered unreliable for sequences several thousand
bases in length. For example, the referenced study shows
a median accuracy of 80% for sequences of average length
120, but accuracy falls to 41% for sequences of length 1000-
3000. In contrast to the GTfold approach, one may accelerate
the folding of a database of short sequences by distributing
the workload among independent executions on 32 cores to
achieve a near 32× speedup.

Rizk and Lavenier [7] used an NVIDIA GTX280 GPU
to search for microRNAs of length 120 bases, accelerating
Zuker 17-fold versus one core of a Xeon 2.66 GHz worksta-
tion. This GPU has 30 multiprocessors, each a SIMD unit
of eight 32-bit processors. The authors use multiple levels
of parallelism: across several sequences, across cells on a
diagonal, and across independent threads for the computa-
tion for each variable in the algorithm. Memory access is
the bottleneck in their implementation — there is too little
low-latency memory for fast access to the data variables and
energy parameters.

1 2 3 4

Shared Memory

SDRAM 1

SDRAM 2

Figure 3. An FPGA array by Dou et al. [6] to accelerate Zuker.

The special-purpose FPGA accelerator sketched in Fig-
ure 3 was suggested by Dou et al. [6]. It uses a linear array of
processing elements (PEs) connected to SDRAM memories
through an on-chip cache. Each PE requires ten block RAM
memories to store a copy of the energy parameters, despite
extensive optimizations done by the authors. Due to this
heavy memory usage, V and W elements that are computed
in the array must be stored in two SDRAM memories with a
cache to support efficient reuse. The first PE requires direct
access to SDRAM, but all other processors in the array need
only left-to-right communication. Each PE is assigned one
column of the computation domain, and the entire array
computes cells along the same anti-diagonal simultaneously.
Computation proceeds from bottom to top of a column, after
which there is a synchronization phase when the results are

written back to memory; then the next block of columns is
processed.

The authors’ implementation on a Xilinx XC4VLX200-
11 is memory-limited to 16 PEs clocking at 135 MHz. They
achieve a 9.8× speedup for 145-base sequences compared
to a Pentium 4 2.6 GHz CPU. If a modern processor core
were used as the baseline, we expect the speedup to halve.

Dou et al. mention a number of challenges faced in
accelerating Zuker, including the number of dependence
terms in computing the internal loop energy and the large
number of energy parameters required. In particular, storage
requirements for empirically computed energy tables of all
possible hairpin and internal loops of certain sizes present
a challenge to any meaningful acceleration. Variable depen-
dence distances make it difficult to find task assignments
that are balanced among PEs, and long-range dependencies
make it difficult to efficiently schedule the movement of V
and W variables to the required PEs. One solution to the
latter problem is to store these variables in a central cache
until such time as they are required. However, this strategy
may affect scalability if there are a larger number of PEs
in the array. The large number of small-granularity access
operations also make it difficult to optimize scheduling for
efficient external memory access. Furthermore, the long
latency for off-chip memory access degrades performance.

In our previous work, we have accelerated the far simpler
Nussinov RNA folding algorithm [13], which uses the
dependence structure of Equation 1 alone. We were able
to analyze the recurrence using the polyhedral framework
to build space-efficient arrays for 62-base RNAs that are
39× faster than a software implementation running on a
single core of a 3 GHz Intel Core 2 Duo CPU. We also
used nullspace pipelining [14] to convert the long-range
dependencies in the fourth term of Equation 1 to nearest-
neighbor communication, thus avoiding a shared memory
cache. We build on these ideas to accelerate the Zuker
algorithm, which remains a significant challenge.

III. RECURRENCE-TO-1D-ARRAY MAPPING

Given a system of recurrences, we would like to derive
a linear processor and time mapping that describes a 1D
array. We will use tools from polyhedral theory [8], which
we summarize in this section.

Let an n-dimensional iteration vector z = [i1, . . . , in]
identify the indices of a recurrence. We first extract depen-
dencies from a recurrence’s iteration vectors. As an example,
in Equation 1, because W (i, j) requires W (i+ 1, j) for its
computation, we say that [1, 0] is a dependency. An array
for a recurrence can be described by an allocation function,
which maps iteration vectors z onto an (n-1)-dimensional
grid of “virtual” PEs, and a schedule that gives the execution
time of z.

We use a linear function π(z) = [π1(z), . . . , πn−1(z)] for
the allocation, which induces the “virtual” PE space V =

89

{ 1 ≤ i1 ≤ N1; . . . ; 1 ≤ in−1 ≤ Nn−1}. We are only
interested in unpartitioned 1D arrays, so we select one of the
elements of the allocation, say i1, as the physically realized
PE array. The iteration vectors of the other virtual PEs must
be executed by this 1D array.

A linear schedule τ(z) is constructed to respect depen-
dencies, i.e., if z depends on some other iteration vector y,
it must be that τ(z) > τ(y). A schedule must also assign the
iteration vectors of the virtual PEs on the 1D array without
creating a conflict: there must be no two vectors z and y
with τ(z) = τ(y) and π1(z) = π1(y).

Darte et al. [8] give a constructive procedure to create
such schedules for the 1D array, which are of the form (up
to a permutation of the iteration vector indices)

τ(i1, . . . , in) = a1i1+a2i2+a3N2i3+. . .+anN2 · · ·Nn−1in
(5)

where an = ±1, and the greatest common divisor of ak and
Nk is 1.

Notice that this description assumes that the virtual pro-
cessor space is a rectangular parallelepiped. In contrast,
the Zuker recurrence instantiates a triangular domain. We
simply create a rectangular bounding box for this domain
and assume the PEs assign ∞ to the data variables when
computation is outside the triangle. This does, however,
result in a suboptimal schedule.

In the next section, we apply high-level transformations to
simplify the complexity of the Zuker recurrences and remove
long-range dependencies in order to support the generation
of efficient 1D arrays.

IV. TRANSFORMATIONS FOR INCREASED PARALLELISM

First, we simplify the reduction operations in the Zuker
recurrences. Notice that the fourth terms in Equations 1
and 2 are similar. Let the final term in Equation 1 be defined
as

T (i, j) = min
i<k<j

{W (i, k) +W (k + 1, j)} . (6)

We can rewrite the final term in Equation 2 in terms of T :

min

{
W (i+ 1, i+ 1) +W (i+ 2, j − 1) + c
T (i+ 1, j − 1) + c .

(7)

W (i+1, i+1) is always∞, so we can ignore it, allowing us
to replace the reduction in Equation 2 with T (i+1, j−1)+c.

A. Simplifying the Internal Loop Computation

The internal loop and bulge structure computation in
variable VBI presents two challenges. First, every cell
(i, j) depends on a very large triangular section of cells.
Second, because the four indices (i, i′, j, j′) do not define
a rectangular domain, an array generated using the linear
polyhedral framework will have a suboptimal schedule.

Fortunately there exists an algorithmic technique to re-
duce the complexity of VBI without affecting its result.
Lyngsø [15] observed that the energy function ebi is not
arbitrary but depends on the size of a loop, enabling him

i

i+1

i’ j’

j-1

j i

i’ j’

j
i+1

j-1

Figure 4. Difference in internal loop energy as the exterior base pair
changes from (i+1, j−1) to (i, j). Using Equation 8 we see that the energy
for the second loop is ebi(i+1, j−1, i′, j′)−ebistacking(Si+1, Sj−1)+
ebistacking(Si, Sj)− ebisize(l− 2)+ ebisize(l). Here l = i′− i+ j−
j′ − 4 is the loop size.

to simplify the internal loop computation to cubic time
complexity. Lyngsø’s optimization did not yield a speedup
in software because standard implementations already limit
the size of internal loops to 30; in fact, there was a slow-
down due to additional variables introduced during the
transformation. Here we use the Lyngsø transformation to
reduce the complexity of the recurrences to make them more
amenable to hardware acceleration.

We now give a brief overview of the internal loop energy.1

We define two distinct energy functions: ebb for bulges and
ebi for internal loops. The energy function ebi can be split
into contributions from three parameters: stacking energies
of interior and exterior base pairs, the size of the loop, and
the asymmetry of the loop. The energy function for bulges is
similarly defined, though without an asymmetry component.

Let k = i′− i+ j− j′−2 be the size of the internal loop.
The energy function ebi is expressed as

ebi(i, j, i′, j′) = ebistacking(Si, Sj) + ebistacking(Si′ , Sj′)+
ebisize(k) + ebiasymmetry(|(i′ − i− 1)− (j − j′ − 1)|) . (8)

Consider the internal loop closed by base pairs (Si′ , Sj′)
and (Si+1, Sj−1) in Figure 4. We say the loop is lopsided
because the unpaired region on the left has two more bases
than the region on the right. The asymmetry energy compo-
nent is a penalty dependent on the loop’s lopsidedness.

Because ebisize is constant for a fixed loop size, we can
reformulate the internal loop calculation to aggregate all
dependencies V (i′, j′) that have i′−i+j−j′ = constant. We
build from smaller to larger subproblems that have identical
lopsidedness, i.e., whenever i is increased by one base, j is
also decreased by one. This idea is illustrated in Figure 4.

Let VBI ′(i, j, k) and VBI (i, j, k) be the score of the

1A detailed description of all energy functions is available online at
http://www.bioinfo.rpi.edu/zukerm/seqanal/.

90

best internal loop of size k and ≥ k respectively that have
exterior base pair (Si, Sj). We use the following recurrence
to compute the internal loop energies of all loops of size ≥ 5.
For smaller loops, we do a lookup into an experimentally
computed score table provided by Vienna RNA (not shown).

VBI (i, j, k) = min

VBI (i, j, k + 1) if k ≥ 5
VBI ′(i+ 1, j − 1, k − 2)+

ebistacking(Si, Sj)−
ebistacking(Si+1, Sj−1)+
ebisize(k)− ebisize(k − 2)

VBI
′
(i, j, k) = min

V (i+ 1, j − k − 1)+ if k = 1
ebi(i, j, i+ 1, j − k − 1)

V (i+ k + 1, j − 1)+
ebi(i, j, i+ k + 1, j − 1)

V (i+ 1, j − k − 1)+ if k = 2
ebi(i, j, i+ 1, j − k − 1)

V (i+ k + 1, j − 1)+
ebi(i, j, i+ k + 1, j − 1)

V (i+ 2, j − 2)+
ebi(i, j, i+ 2, j − 2)

VBI ′(i+ 1, j − 1, k − 2)+ if k ≥ 3
ebistacking(Si, Sj)−
ebistacking(Si+1, Sj−1)+
ebisize(k)− ebisize(k − 2)

V (i+ 1, j − k − 1)+
ebi(i, j, i+ 1, j − k − 1)

V (i+ k + 1, j − 1)+
ebi(i, j, i+ k + 1, j − 1).

Note how, when aggregating at VBI ′(i, j, k) from
VBI ′(i+1, j−1, k−2), we subtract the energy contribution
of ebisize(k − 2) and add the contribution of ebisize(k).
This is possible because the energy components are the same
for all interior pairs V (i′, j′) s.t. k = i′ − i + j − j′ − 2,
forming loops of the same size. Lopsidedness also remains
unchanged since an extra base is added to both sides of the
loop.

We can further simplify this recurrence by observing that
the ebistacking term is independent of k; we can add this
contribution at k = 1. The terms V (i + 1, j − k − 1) and
V (i+ k + 1, j − 1) represent long-range dependencies that
must be pipelined for an efficient array synthesis.

Similarly, VBB(i, j, k) is the score of the best bulge loop
of size ≥ k; we have omitted details due to space limits.

B. Pipelining the Zuker algorithm

As our final transformation, we pipeline long-range de-
pendencies using nullspace pipelining [14]. This includes W
terms to compute T in Equation 6 and V terms to compute
VBI ′ and VBB from the previous section. An application
of nullspace pipelining is described in previous work [13].

The transformed Zuker recurrence equations are defined
over the domain D = { 1 ≤ i ≤ N ; i ≤ j ≤ N ; 1 ≤ k ≤
min{30, j − i − 2, b j−i2 c} }. In the interest of clarity, we
have replaced dependencies on the sequence variables PA
and PB in the energy functions by “. . .” The final system
of recurrences for Zuker is shown below.

W (i, j, k) = min

{
W (i+ 1, j, k) + b if k = 1
W (i, j − 1, k) + b
V (i, j, k) + δ(. . .)
T (i, j, k)

(9)

V (i, j, k) = min

eh(. . .) if k = 1
V (i+ 1, j − 1, k) + es(. . .)
VBB(i, j, k)
VBI (i, j, k)
T (i+ 1, j − 1, k) + c

(10)

PA(i, j, k) =

{
Si if j − i = 1
PA(i, j − 1, k) if k = 1

(11)

PB(i, j, k) =

{
Sj if j − i = 1
PB(i+ 1, j, k) if k = 1

(12)

T (i, j, k) = min

{
T (i, j, k + 1) if 2k ≤ j − i
PW 1(i, j, k) + PW 2(i, j, k)
PW 3(i, j, k) + PW 4(i, j, k)

(13)

PW 1(i, j, k) =

{
PW 3(i, j, k) if 2k = j − i
PW 1(i, j − 1, k) if 2k < j − i (14)

PW 2(i, j, k) =

{
W (i+ 2, j, k) if k = 1
PW 2(i+ 1, j, k − 1) if 2k ≤ j − i (15)

PW 3(i, j, k) =

{
W (i, j − 1, k) if k = 1
PW 3(i, j − 1, k − 1) if 2k ≤ j − i (16)

PW 4(i, j, k) =

{
PW 2(i, j, k) if 2k = j − i
PW 4(i+ 1, j, k) if 2k < j − i (17)

VBB(i, j, k) = min

VBB(i, j, k + 1) + if k = 1
terminalAUGU (. . .)

V (i+ 1, j − 2, k)+
ebbsize(k) + es(. . .)

V (i+ 2, j − 1, k)+
ebbsize(k) + es(. . .)

VBB(i, j, k + 1) if k ≤ min{30, j − i− 2}
PVB1(i, j, k) + ebbsize(k)
PVB2(i, j, k) + ebbsize(k)

(18)

PVB1(i, j, k) =

{
V (i+ 1, j − 2, k)+ if k = 1

terminalAUGU (. . .)
PVB1(i, j − 1, k − 1) if k ≤ min{30, j − i− 2}

(19)

PVB2(i, j, k) =

{
V (i+ 2, j − 1, k)+ if k = 1

terminalAUGU (. . .)
PVB2(i+ 1, j, k − 1) if k ≤ min{30, j − i− 2}

(20)

VBI (i, j, k) = min

VBI (i, j, k + 1)+ if k = 1
ebistacking(. . .)

VBI (i, j, k + 1) if 2 ≤ k ≤ 4

VBI (i, j, k + 1) if k ≥ 5 and
VBI ′(i+ 1, j − 1, k − 2)+ k ≤ min{30,

ebisize(k) j − i− 2}

(21)

VBI
′
(i, j, k) = min

PVI 1(i, j, k)+ if k = 1
ebiasymmetry(k)

PVI 2(i, j, k)+
ebiasymmetry(k)

PVI 1(i, j, k)+ if k = 2
ebiasymmetry(k)

PVI 2(i, j, k)+
ebiasymmetry(k)

V (i+ 2, j − 2, k − 1)+
ebistacking(. . .)

VBI ′(i+ 1, j − 1, k − 2) if k ≥ 3 and
PVI 1(i, j, k)+ k ≤ min{30,

ebiasymmetry(k) j − i− 2}
PVI 2(i, j, k)+

ebiasymmetry(k)

(22)

PVI 1(i, j, k) =

{
V (i+ 1, j − 2, k)+ if k = 1

ebistacking(. . .)
PVI 1(i, j − 1, k − 1) if k ≤ min{30, j − i− 2}

(23)

PVI 2(i, j, k) =

{
V (i+ 2, j − 1, k)+ if k = 1

ebistacking(. . .)
PVI 2(i+ 1, j, k − 1) if k ≤ min{30, j − i− 2} .

(24)

91

Figure 5. Overview of the 1D Zuker array, which uses four main PE types. Equation numbers (from Section IV-B) computed by a PE are shown in the
ALU block; energy functions stored in block RAMs and registers are shown at the top of each PE; and the growth of delay registers as a function of RNA
length is shown in the bottom block.

V. 1D ZUKER ARRAY

To map our array to physical processing elements, we
allocate a 1D set of processors along the recurrence’s k
dimension — one at each integral point on the k axis. The
schedule and allocation of the array are given by

τ(i, j, k) = −2i+Nj − k
π(i, j, k) = k .

The schedule satisfies all the dependence constraints of the
recurrence; to be conflict-free according to Equation 5, the
greatest common divisor of N and 2 must be one, i.e., we
can only build arrays for sequences of odd length. Even-
length sequences are padded up using a special character.

Each processor in the array executes a rectangular domain
of points { (i, j) | 1 ≤ i ≤ N ; 1 ≤ j ≤ N }. Our
array assigns ∞ to the variables when computing outside
the domain of the Zuker recurrence. An RNA of length N
can be folded in τ(1, N, 1)−τ(3, 3, 1) = N2−3N+4 clocks,
though useful work is done on only 50% of the clock cycles.

A high level overview of our array is shown in Figure 5.
It is instructive to study the characteristics of the array
using the system of recurrences in Section IV-B. First, all
communication between PEs is limited to the three adjacent
neighbors. The PE placed at k = 1 is the most resource-
intensive in the array, since it is the only one to instantiate
the compute-intensive variables V and W defined at k = 1.
Note that this PE alone holds a copy of the memory-
intensive hairpin (eh) and internal loop energy tables used to
compute V and W . Similarly, the stacking energy functions
are required only at PE 1; since a PE k always processes
internal loops of size k, we can distribute one copy of the
size and asymmetry energy functions across the entire array.
In contrast, the array described in Section II requires a copy
of all energy functions at each PE and must implement all
computation in Equations 9-24 in every PE in the array,

limiting implementation to 16 PEs. This is because the array
was placed along the j dimension of the recurrence.

Since internal loops are limited in size to 30, data vari-
ables VBB ,PVB1,PVB2,VBI ,VBI ′,PVI 1, and PVI 2

need be calculated only on PEs 1-30. All subsequent PEs in
the array implement only the T and PW 1-PW 4 computa-
tions, the latter four being simple data pipelines. As a result,
there are fewer dependencies in these PEs, so local memory
to store intermediate values is greatly reduced.

We use a single processor (PE 0 in Figure 5) to execute
Equation 4 sequentially after every column j of V (i, j) has
been buffered. This adds a latency of N clocks to the folding
computation.

Input sequence data is sent to PE 1 at regular intervals
determined by the schedule. The V table values, which
are required for the minimum free-energy computation, are
always available at PE 1 (arrays instantiated along any
other axis would have multiple sources). The minimum free-
energy score is available at PE 0.

Finally, as N increases beyond 60, the size of the array
equals N

2 . We can fold an RNA of length N with just half
the processors needed by arrays placed along the i or the j
axes; moreover, only the cheapest PE needs to be replicated.

VI. FPGA IMPLEMENTATION

We have coded the array of the previous section in
VHDL, parametrized by the RNA length, targeting a Xilinx
Virtex 4 LX100-12 FPGA device. The array can either
output V values for traceback in software or send just the
minimum free-energy score. We use three bits to represent
RNA characters and use 16-bit data paths with saturation
arithmetic to avoid overflow. We have also implemented
variables to calculate dangling energies and use ten block
RAM memories for the empirical loop energy scores in PE
1; all other energies are implemented in distributed memory.

92

The latency of our implementation is

9 + (N2 − 3N + 4) +N = N2 − 2N + 13 (25)

clock cycles. Consequently, the input data rate is very low,
approximately 3N bits per N2 clocks.

A. Techniques for Synthesis after Polyhedral Analysis

We now give a few techniques that can be generally
applied to synthesize optimized arrays on FPGAs after
polyhedral analysis. Any dependence in a recurrence has to
be sent from the source to sink PE after a fixed delay that
is computed using the schedule. For example, dependency
d = [0,−1, 0] requires a delay of |τ(d)| = N clocks.
These delays are usually programmed as shift registers with
a global reset. Using a reset, however, can adversely impact
the resource usage and speed of the implementation on a
Xilinx FPGA. If these registers are coded with a reset,
synthesis tools use an entire FPGA LUT and its associated
flip flop to realize a single bit shift; without reset, a 16-bit
shift register can be realized with these same resources. We
can always remove reset on dependency delay registers so
long as necessary initialization conditions are programmed at
the boundaries of the computation domain. This optimization
is extremely useful, allowing us to fold a sequence 45 bases
longer than is otherwise possible.

Since our design uses very little on-chip memory for
tables to support computation, a large fraction of the block
RAM memories are unused. We can use these memories
as FIFOs to implement the dependency delays. Our PE
implementation is parametrized first to use all the on-chip
block RAMs and only then to use LUTs to implement
delays. With this optimization, we are able to increase by
75 the size of the largest RNA folded.

To achieve an acceptable clock frequency for our design,
the computation in a PE must be pipelined. Unfortunately,
the technique we have used assumes that an entire iteration
is executed in a single clock cycle. The schedule we have
selected, however, does instantiate a large number of de-
lays on the majority of dependencies. It therefore becomes
possible to pipeline certain paths of the computation in a
PE, which synthesis tools can do automatically using the
retiming optimization. For dependencies realized using block
RAM memories, we always ensure that a small fraction of
the delay is still realized using registers. Without retiming,
our design synthesized to just 60 MHz; with retiming, the
tools achieve a clock frequency of 130 MHz. This clock rate
compares well with the manually optimized array mentioned
in Section II that runs at 135 MHz on the same FPGA family.

Although the transformations we have applied to the
original Zuker algorithm are provably correct, verifying the
accuracy of an implementation is a challenging task. We
first wrote a C loop implementation of the transformed
system of recurrences and confirmed identical output as the
fill_arrays function in the Vienna RNA package. The

VHDL implementation of every energy function was first
testbenched on all possible input bases to ease debugging.
The entire array was simulated in ModelSim on randomly
generated RNAs, and both the V table scores and the min-
imum free-energy scores were compared to Vienna RNA’s
output for an exact match. Finally, we validated correctness
in hardware on our FPGA system.

VII. RESULTS

We built our array for the Xilinx Virtex 4 LX100-12
FPGA using SmartXplorer to explore different build strate-
gies. The results in this section are all from experiments
run in real hardware on our FPGA system. To confirm
accuracy of our implementation, we built arrays to fold
sequences of length 121, 251, 261, and 273. We folded
10,000 randomly generated RNAs of each size and compared
their minimum free-energy scores to those of RNAfold. The
two matched exactly. We also folded 1090 sequences of
length 99 bases from the Rfam database on our array and
confirmed matching scores to those of RNAfold.

For our software baseline, we ran RNAfold on a
single core of a 3 GHz Intel Core 2 Duo processor
with 4 MB cache. We used gcc 4.4.0 with compilation
flags -O3 -march=nocona -fomit-frame-pointer and mea-
sured only the time spent in computing the Zuker recurrence;
traceback and I/O time were excluded.

We built an array with 136 PEs clocked at 130 MHz to
fold RNAs of length 273 bases. This is the largest RNA
that can be folded by our array on the given FPGA device;
it subsumes most of the range of RNA sizes typically folded
by biologists. Table VII lists the resource usage of each PE
type as reported by the synthesis tool. PE 1, which is similar
to the processors in the array by Dou et al., is the most
expensive processor in the array. We implemented all of
its delays using logic (SRL16); block RAMs are used to
implement the energy functions. The empirical loop energy
calculation in this PE is the critical path of the design;
without it, the array clocks at 170 MHz.

PEs 2 to 30 are less resource-intensive but still use 5
block RAMs to implement the delay registers. We use two
implementations for PEs 31 to N

2 . Version A implements all
delay registers using block RAMs. Once we have run out
of these memories, version B, the processor that is used the
most in our design, implements delay registers using logic.
This PE uses just 16% of the logic resources consumed by
PE 1 and requires no block RAMs. This strong contrast
demonstrates why we are able to fit far more processors on
an FPGA device than Dou et al.; it is the main reason for our
array’s superior performance. After place and route, 99% of
the block RAMs and 92% of the slices are used.

To compare array performance to the software baseline,
we generated 100,000 random RNAs of length 273 and
folded them both in hardware and in software. Our array,

93

Table I
AREA REPORT OF PROCESSORS IN OUR ARRAY. THE THREE ROWS REPRESENT NUMBER OF LUTS USED AS SHIFT REGISTERS FOR DELAYS, NUMBER

OF LUTS FOR ARITHMETIC, AND NUMBER OF BLOCK RAMS.

Controller PE0 PE1 PE2-30 PE31-N/2 Ver. A PE31-N/2 Ver. B
SRL16s 20 17 1842 0 0 544
LUTs 1127 273 2426 762 276 136
BRAMs 0 3 10 5 2 0

running in hardware, took 57.14 seconds, which almost ex-
actly equals the runtime predicted by Equation 25. The base-
line system performed the same computation in 5, 894.44
seconds; our array is 103.2× faster than the single core.

A. Comparison to Related Work

We can compare the performance of our array to related
work described in Section II. Dou et al. implemented their
array on the same FPGA family used in our experiment, a
Xilinx Virtex 4 LX200-11, which can fold an RNA of length
N using p processors in N3

6p + 125p+12
8p N2 + p+183

12 N− 3
8N

2

clock cycles. They were able to fit 16 PEs on the device,
clocking the array at 135 MHz. The estimated runtime on
the 100,000 RNAs of length 273 is 1, 007.4 seconds. Our
array performs the same computation 17.6× faster.

Rizk and Lavenier used their GPU implementation to fold
40,000 randomly generated RNAs of length 120 bases on
an NVIDIA Tesla C870 and GTX280. The execution times
of the two GPUs were 32.8 and 18.9 seconds respectively.
We built a new bitfile to fold 121-base RNAs. We were
able to fit two arrays on our FPGA and clock the design
at 110 MHz. To amortize I/O, we folded 80,000 randomly
generated sequences in hardware and halved the runtime
to derive the execution time for 40,000 sequences — 2.72
seconds. Our design can fold 120-base RNAs 12.1× and
6.9× faster than the Tesla C870 and GTX280 respectively.
Note that both GPUs we have compared against are from
a newer generation compared to the Virtex 4 family. Our
hardware is also 119× faster than their baseline, a single
core of a Xeon 2.66 GHz with 6 MB cache.

VIII. CONCLUSIONS

In this work, we have demonstrated the use of polyhedral
analysis to build an array for the Zuker RNA folding
algorithm. Our use of the polyhedral framework allowed
systematic application of transformations and exploration of
the design space, which is not easily achieved with ad hoc
methods. We plan to investigate techniques that remove the
limitation of a linear schedule, which in our case results in
degraded performance. If we used FIFOs instead of fixed-
delay registers for each dependency, we could double the
speedup of our array by “skipping” iteration points outside
the triangular computation domain.

Our array may be modified to implement closely re-
lated algorithms from the Vienna RNA package, including
RNAalifold to fold a set of aligned RNAs and RNALfold to

compute locally stable RNA secondary structures in entire
genomes. Overall, we believe the polyhedral framework
is well suited to accelerating the large number of data-
and compute-intensive dynamic programming algorithms in
computational biology.

ACKNOWLEDGMENT

This work was supported by NIH award R42 HG003225.
R.D. Chamberlain is a principal in BECS Technology, Inc.

REFERENCES
[1] R. Nussinov et al., “Algorithms for loop matchings,” SIAM

J. Appl. Math., vol. 35, no. 1, pp. 68–82, July, 1978.

[2] M. Zuker, “Computer prediction of RNA structure,” Methods
in Enzymology, vol. 180, pp. 262–88, 1989.

[3] M. Höchsmann et al., “Local similarity in RNA secondary
structures,” in Proc. IEEE Bioinformatics, 2003, pp. 159–68.

[4] T. Mourier et al., “Genome-wide discovery and verification of
novel structured RNAs in Plasmodium falciparum,” Genome
Research, vol. 18, pp. 281–92, 2008.

[5] A. Mathuriya et al., “GTfold: a scalable multicore code for
RNA secondary structure prediction,” in Proc. ACM Sympo-
sium on Applied Computing, 2009, pp. 981–988.

[6] Y. Dou et al., “Fine-grained parallel application specific com-
puting for RNA secondary structure prediction on FPGA,” in
Intl. Conf. on Computer Design, October 2008, pp. 240–247.

[7] G. Rizk and D. Lavenier, “GPU accelerated RNA folding
algorithm,” in ICCS ’09: Proceedings of the 9th International
Conference on Computational Science, 2009, pp. 1004–1013.

[8] A. Darte et al., “Constructing and exploiting linear sched-
ules with prescribed parallelism,” ACM Trans. Des. Autom.
Electron. Syst., vol. 7, no. 1, pp. 159–172, 2002.

[9] S. Derrien and P. Quinton, “Parallelizing HMMER for hard-
ware acceleration on FPGAs,” Application-specific Systems,
Architectures and Processors, pp. 10–17, July 2007.

[10] I. L. Hofacker et al., “Fast folding and comparison of RNA
secondary structures,” Chemical Monthly, vol. 125, pp. 167–
188, February 1994.

[11] N. R. Markham and M. Zuker, “DINAMelt web server for
nucleic acid melting prediction,” Nucleic Acids Research,
vol. 33, pp. 577–581, 2005.

[12] K. Doshi, J. Cannone, C. Cobaugh, and R. Gutell, “Evaluation
of the suitability of free-energy minimization using nearest-
neighbor energy parameters for RNA secondary structure
prediction,” BMC Bioinformatics, vol. 5, no. 1, p. 105, 2004.

[13] A. Jacob, J. Buhler, and R. Chamberlain, “Accelerating Nussi-
nov RNA secondary structure prediction with systolic arrays
on FPGAs,” in Application-specific Systems, Architectures
and Processors, 2008, pp. 191–196.

[14] S. V. Rajopadhye, “Synthesizing systolic arrays with control
signals from recurrence equations,” Distributed Computing,
vol. 3, no. 2, pp. 88–105, 1989.

[15] R. B. Lyngsø, M. Zuker, and C. N. S. Pedersen, “Fast evalua-
tion of internal loops in RNA secondary structure prediction,”
Bioinformatics, vol. 15, no. 6, pp. 440–445, June 1999.

94

