
CSE 560M Computer Systems Architecture I

Assignment 5, due Friday, Dec. 6, 2024

In this lab assignment we will explore using the gem5 Out of Order (OoO) CPU model to look
at factors within a single core processor and see how their variation can effect performance.
You will be asked to sweep parameters that will change the sizes of a few microarchitecture
parameters and explain how and why they affect performance.

1. To vary the parameters in the simulation we will be using the option parser class
to pass parameter values into the setup options of our CPU. This makes it easy to
set parameters on your simulation items from the command line. To make things
straightforward we have provided a file to add this functionality to your simulation.
To start, copy over the files into your own working directory (e.g. hw5).

cp -r $GEM5/hw5 2023/* .

Take a moment to review the files. The hw5config.py file is similar to the previous
setup files you’ve created, however here we have added the opts to the options parser
that was used in the previous lab to set parameters for the cache. In this assignment,
the caches have already been set up for you. They can be set by using the switches

--caches and --l2cache

The input binary is specified with the --c switch and specifying the binary path. For
example,

--c /absolute/path/to/binary

We will also be using an Out of Order (OoO) processor, and this parameter is set by
the following switch:

--cpu-type="DerivO3CPU"

For this lab the options that you will be changing are directly related to the CPU.
The opts.py file contains a skeleton of the opts parser that will be used to set these
parameters without having to change the source code every run.

You’ll be sweeping three parameters in this lab: (1) the number of reorder buffer
entries, (2) the number of instruction queue entries, and (3) the number of physical
integer registers. In the addOpts function the parser options will be added, which is
an instance of the OptionParser class.

When declaring an option for the parser we will use the function parser.add option()

as we did in Assignment 2. Use this to add configurable options for the three parameters
above. The table below gives the default options for these parameters:

1

Parameter Value
num-rob-entries 192
num-iq-entries 64

num-phys-int-regs 256

The other function declared in opts.py is the set config() function which receives a
list of CPUs and the options which are used to set values. Under the scope of the for
loop already declared, set the values of the parameters that you are changing for the
given CPU like so:

cpu.parameter = options.parameter name

The three parameters that you have to set in the CPU class are numROBEntries,
numIQEntries, and numPhysIntRegs.

2. Now that the options are set properly we can sweep across parameters and take mea-
surements! Similar to previous assignments we are going to run daxpy arm big pro-
gram (which is daxpy with a larger input size) using the ARM ISA and save the simulator
output files as you vary the parameters of the options you’ve created. Using a power
of 4 step size (as opposed to a linear one, each entry is approximately quadruple of
the previous one) to perform a measurement of each permutation of configurations
as you sweep: (1) the number of physical integer registers from 64 to 1024, (2) the
number of instruction queue entries from 4 to 256, and (3) the number of reorder
buffer entries from 4 to 256. This should result in a total of around 50 runs that take
much longer than previous simulator runs so it is HIGHLY suggested that you create a
script to automate the process. The simulation can be started by running the following
command:

$GEM5/build/ARM/gem5.opt hw5config.py -c $GEM5/../test_progs/daxpy/daxpy_arm_big

--cpu-type="DerivO3CPU" --caches --l2cache

--num-phys-int-regs=$INT_VALUE

--num-rob-entries=$INT_VALUE

--num-iq-entries=$INT_VALUE

Please note the above is a one line command and you may have to change the daxpy
path depending on your location. Also, make sure you don’t overwrite your data each
time you run as the default m5out folder is replaced each time (add --outdir to the
command above). The following table shows the values that you should record for
each run.

Parameters to record.

Number of seconds simulated
Number of cycles rename is blocking
Number of integer rename lookups

Instruction Issue Rate
Idle cycles from register renaming

Number of times rename has blocked due to ROB full
Cache miss rates

2

What other parameters could offer insight into the workings of this out-of-order pro-
cessor?

Same as last lab, pick two parameters from those recorded above and plot the results
from them based on the data from the various configurations of our CPU to show some
kind of meaningful conclusion. Give a brief summary of what you think is happening
and what the data is telling you.

Note: this is a 3-dimensional space as you are varying the parameters so a typical
line/bar graph won’t necessarily be the best way to represent the data. Try to think of
something creative! Below are some examples:

3

4

