
CSE 560M Computer Systems Architecture I

Assignment 2, due Friday, Oct. 11, 2024

In this lab assignment we will explore using the gem5 simulator to look at branch predic-
tion. To make the performance reasonable, we will include a cache subsystem. The cache
subsystem will be explored in more detail in the next assignment.

1. In this exercise, we will be creating the following system:

This may look somewhat similar to your previous system but with some extra building
blocks added. Instead of a simple unified memory system there is now a hierarchy of
caches for the CPU to query for memory. Here, we’ve added a L1 data and instruction
cache along with a unified L2 cache to the configuration file. These caches will be
extensions of the Cache class and will be instantiated in a similar way to the previous
lab.

Of course, this base class does not have every parameter instantiated for us so lets walk
through instantiating one of these SimObjects. We’ll start with the L1 instruction

1

cache to begin and leave the rest as an exercise. First we’ll need to create a Caches.py

file alongside our gem5 configuration file from last lab. To start we’ll need to create
the file Caches.py by running the following command in a cse560m/hw2 folder:

touch Caches.py

Then opening the file in the text editor of your choice begin by typing out the code to
import the gem5 building blocks.

from m5.defines import buildEnv

from m5.objects import *

Then, on the next line, we’ll start by declaring the class L1Cache and setting some
default parameters:

class L1Cache(Cache):

assoc = 2

tag latency = 2

data latency = 2

response latency = 2

mshrs = 4

tgts per mshr = 20

Now we need to define an initialize function and connections for the cache:

def init (self, options=None):

super(L1Cache, self). init ()

pass

def connectBus(self, bus):

self.mem side = bus.slave

def connectCPU(self, cpu):

raise NotImplementedError

NOTE: These functions are within the scope of the L1Cache, take note of the indents.

Now we can move on to actually defining a cache that will be used. On the next line
we will define the actual L1 instruction cache.

2

class L1ICache(L1Cache):

is read only = True

writeback clean = True

size = ’16kB’

def init (self, opts=None):

super(L1ICache, self). init (opts)

if opts.l1i size:

self.size = opts.l1i size

if opts.l1i assoc:

self.assoc = opts.l1i assoc

def connectCPU(self, cpu):

self.cpu side = cpu.icache port

A couple things to note with this configuration: This cache is defined as read only
meaning that we can’t write values back to the cache, which makes sense as we wouldn’t
want to corrupt our instructions. Next, the writeback clean option is set to true
denoting that writebacks will happen when evicting clean lines (As a fun exercise
think about why this is specified here). After defining the size we add options for size
and whether or not the cache is associative. Following that, the initialize function
is defined which will load in the size and association options for the cache. Finally,
the connections are defined stating that the connection between itself and the CPU is
through the CPU’s icache port.

Now, starting with what we’ve defined here, implement a L1D cache and create a L2
cache which will be its own extension of the Cache (not L1Cache) class.

The member functions for the L2 cache should include the following:

def connectCPUSideBus(self, bus):

self.cpu side = bus.master

def connectMemSideBus(self, bus):

self.mem side = bus.slave

The specifications for both L1 D- and L2 Cache are as follows:

3

L1 Data Cache L2 Cache
is read only False False

writeback clean False False
size 64kB 256kB

assoc default 8
tag latency default 20

data latency default 20
response latency default 80

mshrs default 20
tgts per mshr default 12

Connections cpu.dcache port
CPUSideBus:master
MemSideBus:slave

And for both caches add the option to specify their size and associativity as we did in
the L1 Cache.

2. Next, we need to alter the CPU model so that it can support the branch predictors.
To start, copy your configuration file from the first assignment, x86 vs arm.py, into a
new file with some meaningful name, in this case assignment2.py.

cp ../hw1/x86 vs arm.py assignment2.py

From there open your newly copied file in a text editor of your choice.

First we will add the ability to set the type of branch predictor, its size, and the
number of bits in the counters on the command line. Add the following after the
existing parser.add option command.

parser.add option("--bp", type="str", default=None)

parser.add option("--bp size", type="int", default=None)

parser.add option("--bp bits", type="int", default=None)

and add
bp = options.bp

after parsing the arguments with parser.parse args() and setting program just a
few lines down.

Next you’ll need to remove the ISA specific clock settings.

if isa == "x86":

system.clk domain.clock = ’1GHz’

elif isa == "arm":

system.clk domain.clock = ’1.2GHz’

And replace with:

if options.clock freq:

system.clk domain.clock = options.clock freq

else:

system.clk domain.clock = ’1.2GHz’

For the next two assignments, we will only use the Arm ISA.

4

The system.cpu = TimingSimpleCPU() line gets replaced with the following

if bp == "LocalBP":

system.cpu = MinorCPU(branchPred=LocalBP())

system.cpu.branchPred.BTBEntries = options.bp size

system.cpu.branchPred.localPredictorSize = options.bp size

system.cpu.branchPred.localCtrBits = options.bp bits

elif bp == "TournamentBP":

system.cpu = MinorCPU(branchPred=TournamentBP())

system.cpu.branchPred.BTBEntries = options.bp size

system.cpu.branchPred.localPredictorSize = options.bp size

system.cpu.branchPred.localCtrBits = options.bp bits

system.cpu.branchPred.globalPredictorSize = options.bp size

system.cpu.branchPred.globalCtrBits = options.bp bits

else:

system.cpu = MinorCPU()

Here, the branch predictor can be set to LocalBP, which acts as the simple branch
predictors initially described in class (if bp bits=1, it remembers the last value; if
bp bits=2, it is a 2-bit counter). Or it can be set to TournamentBP, which is the
hybrid predictor described in class (the combination of the simple predictor and the
correlated predictor). The bp size parameter sizes all of the relevant tables (including
the BTB).

3. Now lets add the caches that we’ve created to our system configuration file.

First we will need to remove the following commands from the last assignment since
we are going to connect the L1 caches to the L2 cache.

system.cpu.icache port = system.membus.slave

system.cpu.dcache port = system.membus.slave

Now we can import your newly defined caches in the script.

from Caches import *

You’ll need to use the parser.add option command to add all of the options you
added in your caches; otherwise, Python will complain. You should also add an option
for varying the CPU clock speed. Note that the clock frequency and cache size will be
of type str, and the cache associativity will be of type int.

Now we will start to connect the modules together, first instantiate the L1 caches using
the following lines of code:

system.cpu.icache = L1ICache(options)

system.cpu.dcache = L1DCache(options)

Then connect them to your cpu using the following lines:

system.cpu.icache.connectCPU(system.cpu)

system.cpu.dcache.connectCPU(system.cpu)

5

Now we need to create a bus to connect our L1 caches to L2, however, it only has one
port so we need to create a bus to connect the three along with control signals from
the CPU.

Create a memory bus, a coherent crossbar, in this case

system.l2bus = L2XBar()

Hook the CPU ports up to the l2bus

system.cpu.icache.connectBus(system.l2bus)

system.cpu.dcache.connectBus(system.l2bus)

Then create the L2Cache in the system and connect it’s CPUSideBus to the l2Bus and
it’s MemSideBus to the membus created in the last assignment.

system.l2cache = L2Cache(options)

system.l2cache.connectCPUSideBus(system.l2bus)

system.l2cache.connectMemSideBus(system.membus)

You should now have a complete system with a working branch predictor and L1 & L2
cache! In this lab we are going to use the program queens to test the system.

Now in your hw2 directory, test your assignment2.py configuration file using the
command:

$GEM5/build/ARM/gem5.opt --outdir="queens tournament" assignment2.py \
--prog="queens" --bp="TournamentBP" --bp size="8192" --bp bits="2"

Note that the \ in the above command is simply indicating that it runs onto the second
line.

Include a screenshot of the console output in your writeup.

4. Now that we have a working system let’s change some parameters and get some mea-
surements. While we have the ability to vary the parameters of the cache, we’ll save
that for next time. In this assignment, our interest is in the performance impact of the
branch predictors.

We can independently set the following things:

Parameter Label Possible Values
branch predictor bp LocalBP, TournamentBP

table size bp size 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192
counter bits bp bits 1, 2

However, not all parameter value combinations make sense. With the tournament
predictor, the counter bits should always be set to 2.

Unfortunately, the low-level details of the branch predictors are sufficiently different
(both from each other and from the simplified discussion given in class) that the various
internal statistics associated with branch prediction cannot fairly be compared with
one another. So, we will rely on how they impact CPI. Fortunately, the new processor
model (system.cpu) shows us CPI directly in stats.txt.

For this assignment you are to execute 30 separate simulation runs:

6

• All 10 table sizes for the local predictor with a 1-bit counter. A label for this set
is Loc1.

• All 10 table sizes for the local predictor with 2-bit counters. A label for this set
is Loc2.

• All 10 table sizes for the tournament predictor with 2-bit counters. A label for
this set is Tour.

These simulations are all short, so they shouldn’t take very long to run. You do not
need to include screenshots for each run, the example run above is sufficient. Do,
however, check the generated config.ini files to ensure that you really are running
the simulations you think you are. The parameter labels in the configuration file are
those set in the .py file above.

5. For each set (Loc1, Loc2, and Tour), plot CPI as a function of table size. To improve
the readability of the graphs, you might make the y-axis something larger than zero.
You can put all three plots on one graph (if they are sufficiently separate to distinguish
each point), or you can use three separate graphs, your choice. Describe (in a paragraph
or so) what you can conclude from this data. Are the results what you expected? Any
surprises?

7

