
CSE 560M Computer Systems Architecture I

Assignment 1, due Friday, Sep. 20, 2024

This goal of this lab assignment is to help familiarize you with simulating a system using gem5
by simulating two programs with two different instruction set architectures and interpreting
the accompanying statistics with meaningful analysis. Consequently, the systems that we
will be simulating are relatively simple. In the coming weeks, we will simulate more complex
systems to reinforce concepts covered in class. The system level aspect of this assignment is
based on introductory gem5 materials from Jason Lowe-Power of UC Davis. The benchmark
applications were obtained from UW-Madison and Charlie Reiss at UVA.

It is possible to obtain the source code for gem5 from github and build it yourself, but we
will describe how to work with the pre-built gem5 simulator on the WUSTL Linux cluster
machines.

1. Log into shell.cec.wustl using your WUSTLKey credentials). If on a Mac, open
a terminal window and issue the command ’ssh wustlkey@shell.cec.wustl.edu’,
where wustlkey is your WUSTL key. If on a PC, connect via an ssh client (e.g., putty,
which is free).

2. Once logged in, issue the command ’qlogin’, which opens a shell on one of the Linux
cluster machines. Always execute gem5 simulations on one of the cluster machines,
not directly on shell.cec, as compute-intensive jobs on shell.cec will be summarily
terminated by the EIT staff.

3. As an alternative to the two steps above, you can use a web browser to access one of
the Linux cluster machines by following the link below:

https://linuxlab.engr.wustl.edu

This gives you a windowing environment on one of the Linux cluster nodes.

Use your WUSTL key credentials to log in, then in the Interactive Apps pulldown
(look at the top menu bar) select ‘Academic Linux Desktop’, then ‘Launch’, and when
it is available (it takes a bit), ‘Launch Academic Linux Desktop’. An example of the
end result is shown in Figure 1.

4. Figure out what shell is currently active with:

echo $0

If using tcsh, open .cshrc in your home directory and add:

1

Figure 1: Example Linux environment.

module add gem5

Else, if using bash, open .bashrc in your home directory and add:

module add gem5

This will set up your environment for running the gem5 simulator. In order for the
terminal to see these changes without restarting your session, use the following com-
mand:

source ~/.cshrc or source ~/.bashrc

depending on which shell you are using. (Most folks will be using bash.)

5. If you are unfamiliar with the Linux command line, the following link has a tutorial:

http://clusters.engineering.wustl.edu/guide/

6. Create directories cse560m and, underneath it, hw1 in your home directory by issuing
the following command:

2

mkdir -p cse560m/hw1

Navigate to this directory using:

cd cse560m/hw1

and create the file x86 vs arm.py with:

touch x86 vs arm.py

7. Now we will begin to construct our simple system. In this exercise, we will be creating
the system shown in Figure 2:

Figure 2: System to be simulated.

In this assignment, we will be using both the x86 and ARM ISAs.

All systems in gem5 are created by Python scripts. gem5’s modular design is built
around the SimObject type. Most of the components in the simulated system are
SimObjects: CPUs, caches, memory controllers, buses, etc. gem5 exports all of these
objects from their C++ implementation to Python. Essentially, creating a system
configuration file is analogous to playing with LEGOs, where each component in our
system is one LEGO that we will combine with other LEGOs.

Now, using your favorite text editor (I prefer vim, but you can use whatever you are
comfortable with), open the x86 vs arm.py file you created. The first thing we will do
is make visible all of the built SimObjects associated with a target ISA available to
us with the following lines:

3

import m5

from m5.objects import *

Keeping with the LEGO theme, we are importing all of the LEGOs that we get to play
with.

Note, if you choose to copy and paste code from this document assignment, make sure
you proof it because it frequently doesn’t transcribe correctly and is error prone.

8. The gem5 x86 and ARM simulators have already been built for you. In order to use
either simulator binary, add the follow lines to your configuration file:

import os

gem5 path = os.environ["GEM5"]

9. We want to be able to specify which program to run at the command line, so we will
instantiate an option parser and add an option to specify the program to run. Add
the following lines to your configuration file.

import optparse

parser = optparse.OptionParser()

parser.add option("--prog", type="str", default=None)

(options, args) = parser.parse args()

program = options.prog

10. For our first piece, we will instantiate a System object. The System object will be the
parent of all the other objects in our simulated system. The System object contains a
lot of functional information, like the physical memory ranges, the root clock domain,
the root voltage domain, etc. To create the system SimObject, we simply instantiate
it like a normal Python class:

system = System()

This is analogous to the base LEGO piece that all of our other LEGOs will be placed
on.

11. Now that we have a reference to the system we are going to simulate, we can set the
clock on the system. We first have to create a clock domain.

system.clk domain = SrcClockDomain()

4

We have to specify a voltage domain for this clock domain. Since we don’t care about
system power, we’ll just use the default options for the voltage domain. Then we can
set the clock frequency on that domain.

system.clk domain.voltage domain = VoltageDomain()

Setting parameters on a SimObject is exactly the same as setting members of an object
in Python. Since we are using two different architectures, we want to set the system
clock conditioned on what architecture we are using.

isa = m5.defines.buildEnv[’TARGET ISA’]

if isa == "x86":

system.clk domain.clock = ’1GHz’

elif isa == "arm":

system.clk domain.clock = ’1.2GHz’

12. Once we have a system, let us set up how the memory will be simulated. We are going
to use timing mode for the memory simulation. You will almost always use timing
mode for memory simulation. We will also set up a single memory range of size 512
MB, a very small system. Note that in the Python configuration scripts, whenever a
size is required you can specify that size in common vernacular and units like ’512MB’.
Similarly, with time you can use time units (e.g., ’5ns’). These will automatically be
converted to a common representation, respectively.

Add the following lines to your configuration file:

system.mem mode = ’timing’

system.mem ranges = [AddrRange(’512MB’)]

13. Now, we can create a CPU. We will start with the most simple timing-based CPU
in gem5, TimingSimpleCPU. This CPU model executes each instruction in order and
takes a single clock cycle to execute except for memory requests, which flow through

5

the memory system. To create the CPU you can simply just instantiate the object by
adding the following line to your configuration file:

system.cpu = TimingSimpleCPU()

Next, we are going to create the system-wide memory bus:

system.membus = SystemXBar()

14. Now that we have a memory bus, let’s connect the cache ports on the CPU to it. In this
case, since the system we want to simulate does not have any caches, we will connect
the I-cache and D-cache ports directly to the membus. In this example system, we
have no caches.

Add the following lines to your configuration file:

system.cpu.icache port = system.membus.slave

system.cpu.dcache port = system.membus.slave

15. Next, we need to connect up a few other ports to make sure that our system will
function correctly. We need to create an I/O controller on the CPU and connect it
to the memory bus. Also, we need to connect a special port in the system up to the
membus. This port is a functional-only port to allow the system to read and write
memory. Connecting the PIO (Programmed I/O) and interrupt ports to the memory
bus is an x86-specific requirement.

Add the following lines to your configuration file:

system.cpu.createInterruptController()

if isa == ’x86’:

system.cpu.interrupts[0].pio = system.membus.master

system.cpu.interrupts[0].int master = system.membus.slave

system.cpu.interrupts[0].int slave = system.membus.master

system.system port = system.membus.slave

16. Next, we need to create a memory controller and connect it to the membus. For this
system, we will use a simple DDR3 controller and it will be responsible for the entire
memory range of our system.

Add the following lines to your configuration file:

system.mem ctrl = DDR3 1600 8x8()

6

system.mem ctrl.range = system.mem ranges[0]

system.mem ctrl.port = system.membus.master

At this point, we have placed all of the LEGOs for this system, and we can execute
test applications on it.

17. Next, we need to set up the process we want the CPU to execute. Since we are
executing in syscall emulation mode (SE mode), we will just point the CPU at the
compiled executable. We will be executing daxpy, a double precision application that
takes the form a× x+ y, and queens, which tries to find a placement for n queens on
an n× n chessboard. We will execute each application on both ISAs.

First, we have to create the process (another SimObject). Then we set the processes
command to the command we want to run. This is a list similar to argv, with the
executable in the first position and the arguments to the executable in the rest of the
list. Then we set the CPU to use the process as its workload, and finally create the
functional execution contexts in the CPU. These programs have been authored and
compiled for you for both the x86 and ARM ISA. Depending on which ISA you specify
and what program you wish to deploy

Add the following lines to your configuration file:

process = Process()

apps path = "/project/linuxlab/gem5/test progs/"

if program == "daxpy" and isa == "x86":

process.cmd = [apps path + ’/daxpy/daxpy x86’]

elif program == "daxpy" and isa == "arm":

process.cmd = [apps path + ’/daxpy/daxpy arm’]

elif program == "queens" and isa == "x86":

process.cmd = [apps path + ’/queens/queens x86’]

process.cmd += ["10 -c"]

elif program == "queens" and isa == "arm":

process.cmd = [apps path + ’/queens/queens arm’]

process.cmd += ["10 -c"]

system.cpu.workload = process

system.cpu.createThreads()

18. The final thing we need to do is instantiate the system and begin execution. First,
we create the Root object. Then we instantiate the simulation. The instantiation
process goes through all of the SimObjects we’ve created in python and creates the
C++ equivalents. As a note, the Python class does not have to be instantiated and
then the parameters specified explicitly as member variables. You can also pass the
parameters as named arguments, like the Root object below.

Add the following lines to your configuration file:

7

root = Root(full system = False, system = system)

m5.instantiate()

print ("Beginning simulation!")

exit event = m5.simulate()

print (’Exiting @ tick {} because {}’.format(m5.curTick(), exit event.getCause()))

19. Now that we have created a simple simulation script we are ready to run gem5. gem5
can take many parameters, but requires just one positional argument, the simulation
script. In our case, however, we need to pass the output directory option to the
gem5 build and the program option to the configuration script that we created in
previously. We will need to run the simulator 4 times–2 different ISAs (x86 and ARM)
and 2 different programs. Note that there are 2 binaries for each ISA, i.e. there are
daxpy x86 and daxpy arm binaries for daxpy, and queens x86 and queens arm binaries
for queens.The two different programs are daxpy. One run for x86 might look like this:

$GEM5/build/X86/gem5.opt --outdir="daxpy x86" x86 vs arm.py --prog="daxpy"

The ARM build is targeted by using $GEM5/build/ARM/gem5.opt.

In the future, we may ask you to sweep across many microarchitectural parameters in
which it would make sense to create a script. While it is not necessary for this problem,
it may be good practice to create a script that runs each application using both ISAs.

Take screenshots of each simulator output.

Using the stats.txt file output from each simulator run, confirm the execution time
(sim seconds) by solving the equation for texecution time:

texecution time = (number of instructions)× (CPI)× tclk (1)

where CPI is cycle per instruction and tclk is the CPU clock period. (By confirm, we
mean to extract texecution time, number of instructions, and CPI from the simulation
and combine it with the tclk value that you specified for the simulation and ensure that
the equation holds reasonably well.) Note that the total number of ticks simulated is
NOT the same as the number of CPU cycles simulated, but rather the number of gem5
simulator ticks. However, we know that the simulator tick frequency is 1THz, so we
can use this to determine the total number of CPU cycles simulated.

What is the CPI from each simulation run? Is this as you would expect? If it is high
(hint, hint), why do you think it is high?

Prepare three plots. The x axis is the same for each plot: the two applications and
then the appropriate mean. For the first plot, the y axis is the execution time for the
x86 ISA. For the second plot, the y axis is the execution time for the ARM ISA.

Which ISA is faster? Calculate the speedup of each application for the faster ISA
relative to the slower ISA. The speedup is the y axis for the third plot. Careful which
mean you use for the speedup plot.

8

For this assignment, turn in the configuration file you created, a screenshot of the
output for each run of the simulator, and a document that includes the responses to
the questions above, all as a submission in Canvas. You can either combine everything
into one file or upload multiple files.

9

