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CSE 560 – Practice Problem Set 9 Solution 
 

1. Suppose there are 10 processors on a bus that each try to lock a variable simultaneously.  

Assume that the primitive instructions available are a load-lock (ll) and a store-conditional 

(sc).  Further, assume that each bus transaction (read miss or write miss) is 100 clock cycles 

long.  You can ignore the time of the actual read or write of a lock held in the cache, as well as 

the time the lock is held (they won’t matter much!). 

 

Determine the number of bus transactions required for all 10 processors to each acquire and 

release the lock, assuming they are all spinning when the lock is released at time 0.  About how 

long will it take to process the 10 requests?  Assume that the bus is totally fair so that every 

pending request is serviced before a new request and that the processors are equally fast. 

 

When i processes are contending for the lock, they perform the following sequence of actions, 

each of which generates a bus transaction: 

• i bus transactions to access the lock (execute the ll instruction) 

• i store conditional operations (sc instruction) to try to lock the lock 

• 1 store to release the lock 

Thus for i processes, there are a total of 2i + 1 bus transactions each time that i processes are 

contending for the lock.  Note that this assumes the critical section is negligible, so that the lock 

is released before any other processes whose store conditional failed attempt another load 

linked. 

The above time results in one of the i contending processes to successfully acquire the lock, the 

remaining i - 1 processes are unsuccessful. 

For each of n processes to successfully acquire the lock, the total number of bus operations is: 

∑(2𝑖 + 1) = 𝑛(𝑛 + 1) + 𝑛 =  𝑛2 + 2𝑛

𝑛

𝑖=1

 

For 10 processes there are 120 bus transactions requiring 12,000 clock cycles. 
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2. Assume that variables x1 and x2 are in the same cache block, which starts in the shared (S) 

state in the caches of processor 1 (P1) and processor 2 (P2).  I.e., at some point in the past, both 

variables were read by both processors. The system uses a traditional MSI (3-state) cache 

coherence protocol. 

Assuming the following sequence of events, identify each access as a true sharing miss, a false 

sharing miss, or a hit.  Any miss that would occur if the block size were one word (the size of x1 

or x2) is designated a true sharing miss.  

Time P1 P2 

1 Write x1  

2  Read x2 

3 Write x1  

4  Write x2 

5 Read x2  

 

Here are the classifications by time step: 

 

(1) This event is a true sharing miss, since x1 was read previously by P2 and needs to be 

invalidated from P2. 

(2) This event is a false sharing miss, since x2 was invalidated by the write of x1 by P1 at time 

step 1, but that value of x1 is not used in P2. 

(3) This event is a false sharing miss, since the block containing x1 is marked shared due to the 

read in P2 (at time step 2), but P2 did not read x1.  The cache block containing x1 will be in 

the shared state after the read by P2; a write miss (upgrade) is required to obtain exclusive 

access to the block. 

(4) This event is a false sharing miss for the same reason as time step 3. 

(5) This event is a true sharing miss, since the value being read was written by P2 in time step 4. 
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3. For this problem, assume that we are dealing with a bus-based shared memory multiprocessor 

using the MESI protocol. 

 

Each processor core in the system is identical, and the following information applies to each 

processor core in the system individually.  Instructions are 32 bits wide.  50% of the instructions 

executed are loads or stores. Of these loads and stores, on average 70% are reads to private 

data, 20% are writes to private data, 8% are reads to shared data, and 2% are writes to shared 

data. 

 

Each processor has a single-level split instruction/data cache.  The instruction cache is 16 KB, 

two-way associative, and has 16 byte lines.  The data cache is 16 KB, direct mapped, and also 

has 16 byte lines.  The hit rates in the caches are as follows: 97% for private data, 95% for 

shared data, and 98.5% for instructions. Cache hit time is one cycle. 

 

The system bus has 64 data lines and 32 address lines.  The bus is atomic. The bus is clocked at 

one-half the speed for the processor.  For reads, memory responds with data 12 bus cycles after 

being presented the address, and supplies one block of data per bus cycle after that.  For writes, 

both address and data are presented to memory at the same time.  Thus a single-word write 

consumes 1 bus cycle, while a 16-byte write consumes two cycles.  Assume all requests are 

satisfied by the memory system, not by other caches. 

 

The processor CPI is 2.0 before considering memory penalties. 

 

(a) We want to place as many processors as possible on the bus.  What is the bus utilization of a 

single processor if the caches are write-through with write-allocate strategy?  How many of 

these processors can the bus support before it saturates? 

 

For this part of the problem, assume that a write to the bus automatically invalidates any 

other existing copies of the data being written.  Ignore bus contention and coherence 

messages received from other processors (e.g., remote snoops), but do consider coherence 

traffic generated by the processor. 

 

The key to approaching this problem is to recognize that the true CPI (including memory 

penalties) includes three components: the 2.0 base CPI (CPIbase), plus a component due to 

bus stalls on instruction cache misses (CPIbusI), plus a component due to bus stalls on data 

cache misses (CPIbusD).  Once we have computed these bus CPI components, we can 

compute the bus utilization as the average fraction of the per-instruction time that the bus 

is busy, or 

𝐵𝑢𝑠 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =
𝐶𝑃𝐼𝑏𝑢𝑠𝐼+𝐶𝑃𝐼𝑏𝑢𝑠𝐷

𝐶𝑃𝐼𝑏𝑎𝑠𝑒+𝐶𝑃𝐼𝑏𝑢𝑠𝐼+𝐶𝑃𝐼𝑏𝑢𝑠𝐷
. 

Perform all of your calculations in processor cycles. 

 

It takes 26 processor cycles to fetch a cache line from the memory system, 24 to get the first 

8 bytes and 2 to get the remaining 8 bytes.  Since the bus is atomic, it is busy during that 

entire time.  Call this tmissF, miss time for a memory fetch. 
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First consider the instruction cache.  1.5% of instructions miss the cache, and each miss 

requires tmissF cycles. 

 

CPIbusI = 0.015 × tmissF = 0.015 × 26 = 0.39 

 

Next consider the data cache, which is a bit trickier.  First, there is an overall factor of 0.5, 

since only half of the instructions are loads or stores: 

 

CPIbusD = 0.5 × (…) 

 

Of these, 70% are reads to private data, of which 3% miss in the cache, each using tmissF 

cycles of bus time to fetch a cache line: 

 

CPIbusD = 0.5 × [(0.7×0.03×tmissF) + …] 

 

Next, 20% of the memory operations are writes to private data. 97% of these hit in the 

cache, but because the cache is write-through, each hit still consumes 2 processor cycles 

worth of bus activity to write the word through to memory.  3% of the private writes miss, 

causing tmissF cycles of bus time to fetch the cache line accessed (since the cache is write-

allocate) plus two more cycles to write-through the new value: 

 

CPIbusD = 0.5 × [(0.7×0.03×tmissF) + 0.2×(0.97×2 + 0.03(tmissF + 2)) + …] 

 

Next, 8% of the memory operations are reads to shared data. These are identical to reads to 

private data, except that the miss rate is now 0.05: 

 

CPIbusD = 0.5 × [(0.7×0.03×tmissF) + 0.2×(0.97×2 + 0.03(tmissF + 2)) + 

(0.08×0.05×tmissF) + …] 

 

Finally, 2% of accesses are writes to shared data, which again behave identically to writes to 

private data, since the cache is write-through and the bus write serves as an invalidation to 

other processors: 

 

CPIbusD = 0.5 × [(0.7×0.03×tmissF) + 0.2×(0.97×2 + 0.03×(tmissF + 2)) + 

(0.08×0.05×tmissF) + 0.02×(0.95×2 + 0.05×(tmissF + 2))] 

CPIbusD = 0.636 

 

We can now put it all together: 

 

𝐵𝑢𝑠 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =  
(0.39 + 0.636)

(2.0 + 0.36 + 0.636)
= 0.34 
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Therefore, the bus is 34% saturated by a single processor core.  This means it can support at 

most ⌊
1

0.34
⌋ = 2 processors. 

 

(b) How many processors can the bus support without saturating if the caches are write-back 

(and write-allocate)?  Assume that the probability of having to replace a dirty block in the 

cache on a miss that fetches a new block is 0.3.  Also assume a MESI protocol, and again 

ignore bus contention and coherence messages received from other processors (e.g., 

remote snoops), but do consider coherence traffic generated by the processor.  Assume that 

the cache protocol supports upgrades, so a write hit to a shared block causes an invalidate 

transaction only, taking one bus cycle. 

 

You may make the following two assumptions: (1) writeback is not overlapped with reading 

the new data on the bus, and (2) all write hits to shared data require an upgrade 

transaction.  As in the previous part, CPIbase = 2.0, and all calculations should be in processor 

cycles. 

 

Since the I and D caches are split, and instructions are never modified, instruction misses 

cannot cause writebacks.  Thus, CPIbusI is the same as in part (a): 

 

CPIbusI = 0.39 

 

We will define the data cache miss time, tmissD, to be the average time spent holding the bus 

when servicing a data cache miss.  This includes the fetch time from above, tmissF, plus a term 

to account for the potential of writeback.  We are told that on average 30% of cache misses 

cause a writeback, and a writeback takes four processor cycles on the bus (two for the 

address and first 8 bytes of the line, and two for the remaining 8 bytes), so 

 

tmissD = tmissF + 0.3×4 = 26 + 0.3×4 = 27.2 

 

Now, let’s compute CPIbusD. First consider the cache misses.  In all cases, a cache miss 

behaves the same (read and write misses both need to first read a line of data, and this read 

encapsulates all coherence actions), taking tmissD cycles, so for cache misses we get: 

 

CPIbusD = 0.5 × [(0.7×0.03×tmissD) + (0.2×0.03×tmissD) + 

(0.08×0.05×tmissD) + (0.02×0.05×tmissD) + …] 

 

We haven’t considered cache hits yet.  All read hits are absorbed entirely by the cache.  

Because the cache is writeback, write hits to private data behave the same as read hits.  

Only write hits to shared data propagate to the bus, and they only require a single bus 

transaction (2 processor cycles) to send out an upgrade transaction.  Thus we can complete 

CPIbusD as: 

 

CPIbusD = 0.5 × [(0.7×0.03×tmissD) + (0.2×0.03×tmissD) + 

(0.08×0.05×tmissD) + (0.02×0.05×tmissD) + (0.02×0.95×2)] 
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CPIbusD = 0.454 

 

Use the same construction as above to get bus utilization: 

 

𝐵𝑢𝑠 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =  
(0.39 + 0.454)

(2.0 + 0.36 + 0.454)
= 0.297 

 

So we can support 3 processors in this configuration before the bus saturates. 

 

(c) Assume we add a unified write-back, write-allocate second-level  cache to each processor 

(assuming a write-through, no-write-allocate first level cache with the same parameters as 

before).  The L2 line size is 32 bytes. The local miss rate for all traffic to the L2 cache is 10%.  

The hit time to the L2 cache (which includes the time to transfer data to the L1 cache, but 

not the L1 hit time) is 6 cycles.  The L2 cache is clocked at the same speed as the processor.  

Inclusion is maintained between the caches.  Again, assume that the probability of having to 

replace a dirty block in the L2 cache on a miss that fetches a new block is 0.3. 

 

What is the bus utilization of a single processor now? How many of these processors can the 

bus support without saturating? 

 

Start by computing the time associated with a miss in L2, tmissL2, which takes tmissF + 4 cycles 

(since the L2 cache line is twice as long as the L1 cache line) plus the time associated with a 

writeback (8 cycles): 

 

tmissL2 = (tmissF + 4) + 0.3×8 = 32.4 

 

CPImemI (which incorporates the entire memory hierarchy for misses in the I cache) must now 

take into account a possible writeback from L2 (since it is unified) and the 6 cycles spent on 

a hit in L2 for a miss in L1: 

 

CPImemI = 0.015×(6 + 0.1×tmissL2) = 0.1386 

 

For CPImemD we begin with the cache misses in L1, which will have the following value for 

tmissD: 

 

tmissD = 6 + 0.1×tmissL2 = 9.24 

 

We now have the same expression as before, using the new value of tmissD: 

 

CPImemD = 0.5 × [(0.7×0.03×tmissD) + (0.2×0.03×tmissD) + 

(0.08×0.05×tmissD) + (0.02×0.05×tmissD) + …] 

 

Write hits in the L2 cache to shared data are a bit tricky.  We know that 95% of them hit 

data already in the L1 cache, requiring 2 processor cycles worth of bus activity for the 
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upgrade, as before.  However, there is the possibility that the write may miss in the L1 but 

hit in the L2; this case also requires 2 cycles for an upgrade transaction.  Thus we add in the 

term 0.02×(0.95+0.05×0.9)×2, to get: 

 

CPImemD = 0.5 × [(0.7×0.03×tmissD) + (0.2×0.03×tmissD) + 

(0.08×0.05×tmissD) + (0.02×0.05×tmissD) + 0.02×(0.95+0.05×0.9)×2] 

CPImemD = 0.16774 

 

We might be tempted to use the following equation for bus utilization: 

 

𝐵𝑢𝑠 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =
𝐶𝑃𝐼𝑚𝑒𝑚𝐼 + 𝐶𝑃𝐼𝑚𝑒𝑚𝐷

𝐶𝑃𝐼𝑏𝑎𝑠𝑒 + 𝐶𝑃𝐼𝑚𝑒𝑚𝐼 + 𝐶𝑃𝐼𝑚𝑒𝑚𝐷
 

 

But we would be wrong, because the bus is not occupied for the entire time of an L1 cache 

miss.  We still need values for CPIbusI and CPIbusD.  Fortunately, all of the reasoning above for 

CPImemI and CPImemD still works, as long as we remove the 6 cycles needed for an L2 hit on an 

L1 miss (i.e., use 0.1×tmissL2 instead of tmissD): 

 

CPIbusI = 0.015×0.1×tmissL2 = 0.0486 

 

CPImemD = 0.5 × [(0.7×0.03×0.1×tmissL2) + (0.2×0.03×0.1×tmissL2) + 

(0.08×0.05×0.1×tmissL2) + (0.02×0.05×0.1×tmissL2) + 0.02×(0.95+0.05×0.9)×2] 

CPImemD = 0.07174 

 

 

We use the following formula for bus utilization: 

 

𝐵𝑢𝑠 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =
𝐶𝑃𝐼𝑏𝑢𝑠𝐼 + 𝐶𝑃𝐼𝑏𝑢𝑠𝐷

𝐶𝑃𝐼𝑏𝑎𝑠𝑒 + 𝐶𝑃𝐼𝑚𝑒𝑚𝐼 + 𝐶𝑃𝐼𝑚𝑒𝑚𝐷
 

 

Which gives 

 

𝐵𝑢𝑠 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =  
(0.0486 + 0.07174)

(2.0 + 0.1386 + 0.16774)
= 0.052 

 

So we can support 19 processors in this configuration before the bus saturates. 

 

(d) Finally, compute the average memory access time, in processor cycles, for the processor 

described in part (c). Be sure to include both instruction and data references.  First show the 

equation, and then the numerical results. 

 

For a two-level cache of the type in this problem, the general formula for average memory 

access time, tmem, is: 
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𝑡𝑚𝑒𝑚 = 𝑡ℎ𝑖𝑡𝐿1 + 𝑀𝑖𝑠𝑠𝑅𝑎𝑡𝑒𝐿1 × (𝑡ℎ𝑖𝑡𝐿2 +  𝑀𝑖𝑠𝑠𝑅𝑎𝑡𝑒𝐿2 × 𝑡𝑚𝑖𝑠𝑠𝐿2) 

 

To simplify the calculation, we will separately calculate the instruction memory access time, 

tmemI, and data memory access time, tmemD. The total tmem is simply the weighted average 

taking into account the fact that only half the instructions are data accesses: 

 

𝑡𝑚𝑒𝑚 =
𝑡𝑚𝑒𝑚𝐼 + 0.5 × 𝑡𝑚𝑒𝑚𝐷

1.5
 

 

For the instructions: 

 

tmemI = 1 + 0.015×(6 + 0.1×tmissL2) 

 

For the data, we can split up tmemD into four components corresponding to the different 

types of memory access: 

 

tmemD-read-private = 1 + 0.03×(6 + 0.1×tmissL2) 

tmemD-read-shared = 1 + 0.05×(6 + 0.1×tmissL2) 

tmemD-write-private = 1 + 0.03×(6 + 0.1×tmissL2) 

tmemD-write-shared = 1 + 0.05×(6 + 0.1×tmissL2) + (0.95 + 0.05×0.9)×2 

 

Then 

 

tmemD = 0.7× tmemD-read-private + 0.08× tmemD-read-shared + 0.2× tmemD-write-private + 0.02×tmemD-write-shared 

 

Plugging in all the numbers gives 

 

tmemI = 1.1386 cycles 

tmemD = 1.3355 cycles 

 

and 

 

tmem = 1.204 cycles 


