
CSE 560 – Practice Problem Set 8 Solution

1. Consider the simple virtual memory system described below.

• 14-bit virtual addresses

• 12-bit physical addresses

• Page size = 64 bytes

The first 16 entries in the virtual page table are shown below:

The TLB has 16 entries and is 4-way associative. We can understand access to the TLB by

considering virtual addresses as follows:

Here the TLBT is the tag bits and the TLBI is the index into the TLB.

The contents of the TLB are shown next.

The physically addressed cache is direct mapped. It has 16 lines (blocks) and a 4-byte

line size.

Here, CT is the cache tag, CI is the index, and CO is the offset.

The contents of the cache are:

(a) For virtual address 0x03D4, fill in the bits of the virtual address below (yes, in binary) and

answer the associated questions.

 0 0 0 0 1 1 1 1 0 1 0 1 0 0

What is the VPN (in hex)? 0x0f

What is the VPO (in hex)? 0x14

What is the TLBI (in hex)? 0x3

What is the TLBT (in hex)? 0x03

Does an access to this address result in a TLB hit? yes

Does an access to this address result in a page fault? no

What is the PPN (in hex)? 0x0d

If known, fill in the bits of the physical address below (yes, in binary) and answer the

associated questions.

 0 0 1 1 0 1 0 1 0 1 0 0

What is the cache offset (in hex)? 0x0

What is the cache index (in hex)? 0x5

What is the cache tag (in hex)? 0x0d

Does an access to this address result in a cache hit? yes

If so, what is the byte value? 0x36

(b) Repeat part (a) for virtual address 0x0B8F.

 0 0 1 0 1 1 1 0 0 0 1 1 1 1

VPN is 0x2e

VPO is 0x0f

TLBI is 0x2

TLBT is 0x0b

TLB hit? no

page fault? Can’t tell from given page table (it only shows first 16 pages).

(c) Repeat part (a) for virtual address 0x0040.

 0 0 0 0 0 0 0 1 0 0 0 0 0 0

VPN is 0x01

VPO is 0x00

TLBI is 0x1

TLBT is 0x00

TLB hit? no

page fault? yes

PPN is not known

2. Starting from the standard equation for memory access time with a cache:

𝑡𝑎𝑣𝑔 = 𝑡ℎ𝑖𝑡 +%𝑚𝑖𝑠𝑠 × 𝑡𝑚𝑖𝑠𝑠

Expand the equation to include the effects of virtual memory, including a TLB, and both an L1

and L2 cache. Be careful with the definitions of any variables you introduce.

You can assume that TLB access and L1 access happen concurrently.

Define the following variables to have the given definitions. The first is what we are trying to

compute, and the rest are all inputs (i.e,. given).

Variable Definition

𝑡𝑎𝑣𝑔 Average memory access time

𝑡ℎ𝑖𝑡−𝑇𝐿𝐵 Time for a hit in the TLB

𝑡ℎ𝑖𝑡−𝐿1 Time for a hit in the L1 cache

𝑡ℎ𝑖𝑡−𝐿2 Time for a hit in the L2 cache

𝑡𝑀𝑀 Main memory access time

𝑡𝐷 Secondary store (disk) access time

%𝑚𝑖𝑠𝑠𝑇𝐿𝐵 TLB miss rate

%𝑚𝑖𝑠𝑠𝐿1 L1 miss rate

%𝑚𝑖𝑠𝑠𝐿2 L2 miss rate

%𝑓𝑎𝑢𝑙𝑡 Page fault rate

We will also use the following intermediate variables:

Variable Definition

𝑡𝑚𝑖𝑠𝑠−𝑇𝐿𝐵 Average TLB miss time

𝑡𝑚𝑖𝑠𝑠−𝐿1 Average L1 miss time

𝑡𝑚𝑖𝑠𝑠−𝐿2 Average L2 miss time

𝑡𝑓𝑎𝑢𝑙𝑡 Average page fault time

Working from the processor’s access down the hierarchy,

𝑡𝑎𝑣𝑔 = max(𝑡ℎ𝑖𝑡−𝑇𝐿𝐵 +%𝑚𝑖𝑠𝑠𝑇𝐿𝐵 × 𝑡𝑚𝑖𝑠𝑠−𝑇𝐿𝐵 , 𝑡ℎ𝑖𝑡−𝐿1 +%𝑚𝑖𝑠𝑠𝐿1 × 𝑡𝑚𝑖𝑠𝑠−𝐿1)

The above equation implicitly assumes that TLB access and L1 access happen concurrently.

The formula for average L1 miss time should be familiar:

𝑡𝑚𝑖𝑠𝑠−𝐿1 = 𝑡ℎ𝑖𝑡−𝐿2 +%𝑚𝑖𝑠𝑠𝐿2 × 𝑡𝑚𝑖𝑠𝑠−𝐿2

𝑡𝑚𝑖𝑠𝑠−𝐿2 = 𝑡𝑀𝑀

We next need to consider when we have a miss in the TLB

𝑡𝑚𝑖𝑠𝑠−𝑇𝐿𝐵 = 𝑡𝑀𝑀 +%𝑓𝑎𝑢𝑙𝑡 × 𝑡𝑓𝑎𝑢𝑙𝑡

𝑡𝑓𝑎𝑢𝑙𝑡 = 𝑡𝐷

The above assumes a single page table access. If a multi-level page table is used, the 𝑡𝑀𝑀 in the

above expression for 𝑡𝑚𝑖𝑠𝑠−𝑇𝐿𝐵 would need to be changed to 2𝑡𝑀𝑀.

The above expressions assume a relatively straightforward memory hierarchy.

