
CSE 560 – Practice Problem Set 5

1. In this question, you will investigate how the compiler can increase the amount of ILP via the

scheduling of instructions on a single-issue, in-order pipeline. Our code uses a simple loop that

adds a scalar value to an array in memory. The source code (in C) looks like this:

for (i=1000; i > 0; i=i-1)

 x[i] = x[i] + s;

We can see that this loop is parallel by noticing that the body of each iteration is independent.

The first step is to translate the above code segment into assembly language. In the following

code segment, r1 is initially the address of the element of the array with the highest address,

and f2 contains the scalar value, s. Register r2 is pre-computed, so that 8(r2) is the last element

to operate on. Straightforward assembly language code, not scheduled for the pipeline, looks

like this:

(1) loop: load f0, 0(r1) ;f0  array element

(2) addf f4  f0, f2 ;add scalar in f2

(3) store 0(r1), f4 ;store result

(4) addi r1  r1, #-8 ;decrement pointer 8 bytes (sizeof double)

(5) bneq r1, r2, loop ;branch if r1 != r2

Assume floating point additions take 4 cycles, and the 5-stage pipeline has full bypassing paths

available. Assume the branch predicts “not-taken” and miss-predicted branches flush the

pipeline.

(a) Show the timing of this instruction sequence (i.e., draw a pipeline diagram) without any

code transformations. How many clock cycles are required per iteration? For the entire

code snippet?

(b) Re-schedule the code (make sure it still performs the required computation) to diminish the

time required per iteration. Show the timing of this revised instruction sequence. How

many clock cycles are required per iteration? For the entire code snippet?

(c) Unroll the loop 4 times (i.e., 4 copies of the original loop are computed each iteration). You

may assume r1 is initially a multiple of 32, which means that the number of original loop

iterations is a multiple of 4. Eliminate any obviously redundant computations and do not

reuse any of the floating point registers (you may use additional registers as needed).

(d) Show the timing of the unrolled loop. How many clock cycles are required per iteration? For

the entire code snippet? (Note: you can skip some columns in the middle of the diagram if

they are simply repeating an earlier pattern.)

(e) Re-schedule the unrolled loop, show the timing of this re-scheduled loop. How many clock

cycles are required per iteration? For the entire code snippet?

2. Rename this instruction sequence:

mul r4, r5 → r1

add r1, r2 → r3

Map table

r1 p1

r2 p2

r3 p3

r4 p4

r5 p5

Free-list

p6

p7

p8

p9

p10

3. Dispatch this instruction:

div p7, p6 → p1

Insn Inp1 R Inp2 R Dst Age

Ready bits

p1 y

p2 y

p3 y

p4 y

p5 y

p6 n

p7 y

p8 y

p9 y

4. Determine which of the following instructions are ready.

Insn Inp1 R Inp2 R Dst Age

add p3 y p1 y p2 0

mul p2 n p4 y p5 1

div p1 y p5 n p6 2

xor p4 y p1 y p9 3

(a) Which will be issued on a 1-wide machine?

(b) Which will be issued on a 2-wide machine?

(c) What information will change if we issue the instruction from part (a)?

5. Using the revised pipeline diagrams presented in class, show the execution of the following

instruction sequence:

div r2  r3, r5

add r1  r2, r4

mul r4  r6, r6

 You should assume that the execution units for the three instructions are as follows:

 4 clocks for an add

 10 clocks for a multiply

 20 clocks for a divide

Start by showing the instructions after renaming, and then show the pipeline diagram for a dual-

issue processor.

