
CSE 560 – Practice Problem Set 3 Solution 
 

Three of these problems come from Hennesy & Patterson’s Computer Architecture: A 

Quantitative Approach, 3rd edition. 

 

1. The decode pipeline stage is a poorly chosen name.  Considering that it does more than 

decoding, what else does it do?  What would you propose as an alternative name? 

 

Yes, the decode stage is when we are decoding the meaning of the instruction, but it seems that 

the more important thing (i.e., more computationally difficult thing) is reading the register file in 

that stage. 

 

To be sure, deeper pipelines regularly separate instruction decode from register file read, 

making those two things two different pipeline stages. 

 

2. This exercise asks how well hardware can find and exploit instruction-level parallelism (i.e., 

pipelining).  Consider the following four RISC machine code fragments, each containing two 

instructions: 

 

i. addi r1  r1, #4 

load r2, 7(r1) 

ii. add r3  r1, r2 

store r2, 7(r1) 

iii. breq r1, place 

store r1, 7(r1) 

iv. store r3, 17(r10) 

load r2, 12(r8) 

 

(a) For each code fragment (i) to (iv) identify each dependence that exists or that may exist (a 

fragment may have no dependencies). 

 

(b) For each code fragment, indicate whether data forwarding is sufficient to resolve the 

dependence or if stall cycles are required.  Indicate the number of stall cycles. 

 

Code Fragment Dependence (a) Resolution (b) 

i True dependence on r1 Data forwarding sufficient 

ii No dependence None required 

iii No data dependence (but control 
dependence) 

Stall cycles to resolve branch 
depends upon microarchitecture 

iv Potential dependence on memory Will execute in order in M stage 



 

3. Consider the following RISC assembly code. 

 

(1) load r1,45(r2) 

(2) add r7  r1, r5 

(3) sub r8  r1, r6 

(4) or r9  r5, r1 

(5) brneq r7, target 

(6) add r10  r8, r5 

(7) xor r2  r3, r4 

 

(a) Identify each dependence (both data and control); list the two instructions involved; identify 

which instruction is dependent; and, if there is one, name the storage location involved 

(register or memory) (e.g., register r1 or memory address 4(r1)). 

 

• Inst (2) is dependent on inst (1) through r1 

• Inst (3) is dependent on inst (1) through r1 

• Inst (4) is dependent on inst (1) through r1 

• Inst (5) is dependent on inst (2) through r7 

• Inst (6) is dependent on inst (3) through r8 

• Inst (6) is dependent on inst (5) through control 

• Inst (7) is dependent on inst (5) through control 

 

(b) Using the 5-stage pipeline from class, which of the data dependences that you found in part 

(a) become hazards and which do not? 

 

The first dependency, (2) dependent on (1), is a load-use dependency that will necessitate a 

one clock cycle delay so that the results of the load (available after stage M) are available to 

the execution of the add (in stage X).  None of the rest are hazards. 

 

(c) Draw a pipeline diagram for the sequence, including stalls needed to rectify the hazards. 

 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

(1) F D X M W            

(2)  F D d* X M W          

(3)   F p* D X M W         

(4)     F D X M W        

(5)      F D X M W       

(6)       F D f*        

(7)        F f*        

In the above diagram, the branch is assumed to be predicted NT and was taken.  This shows 

an example with the insertion of stall cycles to flush the pipeline. 

 



4. Increasing the size of a branch prediction buffer means that it is less likely that two branches in a 

program will share the same predictor.  A single predictor predicting a single branch instruction 

is generally more accurate than is that same predictor serving more than one branch instruction. 

(a) List a sequence of branch taken and not taken actions to show a simple example of 1-bit 

predictor sharing that reduces misprediction rate. 

 

Consider two branches, B1 and B2, that are executed alternately. During the execution of 

the program, B1 and B2 each alternate taken/not taken.  If they each had a 1-bit predictor, 

each would always be mispredicted. 

 

In the table below, columns labeled P show the value of a 1-bit predictor shared by B1 and 

B2.  Columns labeled B1 and B2 show the actions of the branches (each alternating 

taken/not taken).  Time increases to the right. T stands for taken, NT for not taken.  The 

predictor is initialized to NT. 

 P B1 P B2 P B1 P B2 P B1 P B2 P B1 P B2 

 NT T T NT NT NT NT T T T T NT NT NT NT T 

Correct?  no  no  yes  no  yes  no  yes  no 

Because a single predictor is shared, prediction accuracy improves from 0% to 50%. 

 

(b) List a sequence of branch taken and not taken actions that show a simple example of how 

sharing a 1-bit predictor increases misprediction. 

 

Here, B1 is always taken, B2 is always not taken, and they are interleaved as in (a). 

 P B1 P B2 P B1 P B2 P B1 P B2 P B1 P B2 

 NT T T NT NT T T NT NT T T NT NT T T NT 

Correct?  no  no  no  no  no  no  no  no 

If each had a 1-bit predictor, each would be correctly predicted after the initial startup 

transient. Because a single predictor is shared, accuracy is 0%. 

 

(c) Discuss why the sharing of branch predictors can be expected to increase mispredictions for 

the long instruction sequences of actual programs. 

 

If a predictor is being shared by a set of branch instructions, then over the course of 

program execution set membership will likely change (i.e., which specific branches are being 

shared).  When a new branch enters the set or an old one leaves the set, the branch action 

history represented by the state of the predictor is unlikely to predict the set behavior as 

well as it did old set behavior, which had some time to affect predictor state.  The transient 

intervals following set changes likely will reduce long-term accuracy. 


