CSE 560
Computer Systems Architecture

Virtual Memory

This Unit: Virtual Memory

+ The operating system (OS)
System software - A super-application

M + Hardware support for an OS

« Virtual memory
+ Page tables and address translation
+ TLBs and memory hierarchy issues

1
A Computer System: Hardware
CPUs and memories
« Connected by memory bus
I/0 peripherals: storage, input, display, network, ...
(NIC = Network Interface Controller)
« With separate or built-in DMA (direct memory access)
« Connected by system bus (which is connected to memory bus)
Memory bus System (I/O) bus
bridge
ﬁﬁh [ova] [DvA] [0 ct]
emory
96 () () [
=3 Ng
[1
3

A Computer System: + App Software

« Application software: computer must do something

Application sofware

Memory bus System (I/O) bus

bndge
[cPuis|[cPurs]
Memory

[omA] [DmA] [0 ctr]

==Fq

A Computer System: + OS

Operating System (0S): virtualizes hardware for apps

« Abstraction: provides services (e.g., threads, files, etc.)
+ Simplifies app programming model, raw hardware is nasty

« Isolation: gives each app illusion of private CPU, memory, 1/O
+ Simplifies app programming model
+ Increases hardware resource utilization

Application Application Application Application
(o]

Memory bus System (I/O) bus

bndge
[cPuss][cPurs]
Memory

[bomA] [DMA] [1/O ctr]

Operating System (OS) and User Apps

+ Sane system development requires a split

» Operating System (0OS): a super-privileged process
» Manages hw resource allocation/revocation for all processes
« Has direct access to resource allocation features
« Aware of: many nasty hardware details, other processes
« Talks directly to input/output devices (device driver software)

« User-level apps: ignorance is bliss
« Unaware of: most nasty hardware details, other apps, OS
« Explicitly denied access to resource allocation features

System Calls

System Call: a user-level app “function call” to OS
» Leave description of what you want done in registers
+ SYSCALL instruction (also called TRAP or INT)
« User-level apps not allowed to invoke arbitrary OS code

« Restricted set of legal OS addresses to jump to (trap
vector)

1. Processor jumps to OS via trap vector (begin privileged
mode)

2. OS performs operation

3. 0S does a “return from system cal

4

(end privileged mode)

Virtualizing Processors

How do multiple apps (and OS) share the processors?
Goal: applications think there are an infinite # of processors

Solution: time-share the resource
« Trigger a context switch at a regular interval (~1ms)
» Pre-emptive: app doesn't yield CPU, OS forcibly takes it
+ Stops greedy apps from starving others
« Architected state: PC, registers
+ Save and restore them on context switches
* Memory state?
« Non-architected state: caches, predictor tables, efc.
« Ignore or flush
» Operating System responsible for handling context switching
» Hardware support is just a timer interrupt

Interrupts

Exceptions: synchronous, generated by running app
» E.g., illegal instruction, divide by zero, etc.

Interrupts: asynchronous events generated externally
« E.g., timer, I/O request/reply, etc.

Timer: programmable on-chip interrupt

« Initialize with some number of micro-seconds

» Timer counts down and interrupts when reaches 0
“Interrupt” handling: same mechanism for both

» “Interrupts” are on-chip signals/bits

« Either internal (e.g., timer, exceptions) or from I/O devices

» Processor continuously monitors interrupt status, when true...

» HW jumps to some preset address in OS code (interrupt vector)

« Like an asynchronous, non-programmatic SYSCALL

Motivations for Virtual Memory

» Use Physical DRAM as a Cache for the Disk
» Address space of a process can exceed physical memory size

+ Sum of address spaces of multiple processes can exceed
physical memory

« Simplify Memory Management
+ Multiple processes resident in main memory
« Each process with its own address space
+ Only “active” code and data is actually in memory
« Allocate more memory to process as needed
» Provide Protection
» One process can't interfere with another
« because they operate in different address spaces
+ User process cannot access privileged information
- different sections of address spaces have different permissions

10

Virtualizing Main Memory

How do multiple apps (and the OS) share main memory?
Goal: each application thinks it has private memory

App’s insn/data footprint > main memory ?
+ Requires main memory to act like a cache
« With disk as next level in memory hierarchy (slow)
» Write-back, write-allocate, large blocks or “pages”
Solution:
« Part #1: treat memory as a “cache”
« Part #2: add a level of indirection (address translation)

Parameter |1$/D$ L2 Main Memory

it 2ns 10ns 30ns

tiniss 10ns 30ns 10ms (10M ns)
Capacity 8-64KB 128KB-2MB 64MB—-64GB

Block size 16-32B 32-256B 4+KB

Assoc./Repl. | 1-4, NMRU 4-16, NMRU Full, “working set”

9
Levels in Memory Hierarchy
cache virtual memory
c
CPU 8B |a|__32B Memory 4KB
:
e
Register Cache Memory Disk Memory
size: 32B 32 KB-4MB 1024 MB 100 GB
speed: 1ns 2ns 30ns 8ms
$/Mbyte: $125/MB $0.20/MB $0.001/MB
line size: 8B 32B 4 KB
larger, slower, cheaper
11

12

A System with Physical Memory Only

Examples:

« most Cray machines, early PCs, many embedded systems, etc.
Memory

Physical
Addresses

Addresses generated by the CPU correspond directly to bytes in physical
memory

A System with Virtual Memory

Examples:
- workstations, servers, modern PCs, etc.

Memory

X Page Table
Virtual

Physical
Addresses

Addresses

Address Translation: Hardware converts virtual addresses to physical
addresses via OS-managed lookup table (page table)

13

14

Page Faults (like “Cache Misses”)

» What if an object is on disk rather than in memory?
» Page table entry indicates virtual address not in memory
+ OS exception handler invoked to move data from disk into
memory
« current process suspends, others can resume
« OS has full control over placement, etc.
Before fault Memory

After fault

Memory

Page Table

Virtual Physical
Addresses [recses

Page Table

Virtual Physical
Addresses Adéyesses

Virtual Memory (VM)

» Programs use virtual addresses (VA)
code heap stack . 0.2M1

Program

» VA size also referred to as machine size
* E.g., 32-bit (embedded) or 64-bit (server)

* Memory uses physical addresses (PA)
'] I:I e 0...2Y-1 (typically M<N, especially if N=64)
« 2Mis most physical memory machine
Main|Mgmory supports

» VA-PA at page granularity (VP—PP)
« By “system” (OS + HW)
« Mapping need not preserve contiguity
« VP need not be mapped to any PP
» Unmapped VPs live on disk (swap)

15

16

Virtual Memory (VM)

Virtual Memory (VM):
« Level of indirection

Application generated addresses are virtual addresses (VAs)

« Each process thinks it has its own 2N bytes of address space

» Memory accessed using physical addresses (PAs)
» VAs translated to PAs at some coarse granularity
» OS controls VA to PA mapping for itself and all other processes
+ Logically: translation performed before every insn fetch, load, store
+ Physically: hardware acceleration removes translation overhead

0S Appl App2

.. VAs
OS controlled VA—PA mappings
PAs (physical memory)

Uses of Virtual Memory

« Isolation and Multi-programming (Memory Management)
« Each app thinks it has 2N B of memory that starts @ 0
» Apps can't read/write each other’s memory
» Can't even address the other program’s memory!
* Protection
» Each page has read/write/execute permission set by OS
« Enforced by hardware
« Inter-process communication
« Map same physical pages into multiple virtual address spaces
+ Or share files via the UNIX mmap () call

[S} Appl App2

17

18

Memory Management

« Multiple processes can reside in physical memory.
» How do we resolve address conflicts?
» what if two processes access something at the same

address?
memory invisible to
kernel virtual memory user code
%esp — stack
. Memory mapped region
Linux/x86 for shared libraries
process 4
the “brk” ptr
memory runtime heap (via malloc)
|mage uninitialized data (.bss)
initialized data (.data)
program text (.text)
forbidden

Solution: Separate Virt. Addr. Spaces

19

« Virtual and physical address spaces divided into equal-
sized blocks
« blocks are called “pages” (both virtual and physical)
« Each process has its own virtual address space

« operating system controls how virtual pages as assigned to
physical memory

0

Virtual Physical

Address PP 2 Address

Space for Space
(DRAM)

Process 1:
vl
(e.g., read/only

BBV library code)
Virtual o—]
[vp1 |

Address Yl

[Wp2 | ———————[PP10
Space for .
Process 2: | M-1

Protection

« Page table entry contains access rights information

« hardware enforces this protection (trap into OS if violation
occurs)
Page Tables Memory

PP 9
Process i: PP 4

XXXXXXX

PP 6
Process j: PP 9

XXXXXXX

21

20

	Slide 1: CSE 560 Computer Systems Architecture
	Slide 2: This Unit: Virtual Memory
	Slide 3: A Computer System: Hardware
	Slide 4: A Computer System: + App Software
	Slide 5: A Computer System: + OS
	Slide 6: Operating System (OS) and User Apps
	Slide 7: System Calls
	Slide 8: Interrupts
	Slide 9: Virtualizing Processors
	Slide 10: Motivations for Virtual Memory
	Slide 11: Levels in Memory Hierarchy
	Slide 12: Virtualizing Main Memory
	Slide 13: A System with Physical Memory Only
	Slide 14: A System with Virtual Memory
	Slide 15: Page Faults (like “Cache Misses”)
	Slide 16: Virtual Memory (VM)
	Slide 17: Virtual Memory (VM)
	Slide 18: Uses of Virtual Memory
	Slide 19: Memory Management
	Slide 20: Solution: Separate Virt. Addr. Spaces
	Slide 21: Protection

