
CSE 560
Computer Systems Architecture

Virtual Memory

1

This Unit: Virtual Memory

• The operating system (OS)

• A super-application

• Hardware support for an OS

• Virtual memory

• Page tables and address translation

• TLBs and memory hierarchy issues

2

CPUMem I/O

System software

AppApp App

A Computer System: Hardware

CPUs and memories
• Connected by memory bus

I/O peripherals: storage, input, display, network, …
 (NIC = Network Interface Controller)

• With separate or built-in DMA (direct memory access)
• Connected by system bus (which is connected to memory bus)

3

Memory

Disk
kbd

DMA DMA

display NIC

I/O ctrl

System (I/O) busMemory bus

CPU/$

bridge

CPU/$

A Computer System: + App Software

• Application software: computer must do something

4

Memory

Disk
kbd

DMA DMA

display NIC

I/O ctrl

System (I/O) busMemory bus

CPU/$

bridge

CPU/$

Application sofware

A Computer System: + OS

Operating System (OS): virtualizes hardware for apps

• Abstraction: provides services (e.g., threads, files, etc.)

+ Simplifies app programming model, raw hardware is nasty

• Isolation: gives each app illusion of private CPU, memory, I/O

+ Simplifies app programming model

+ Increases hardware resource utilization

5

Memory

Disk
kbd

DMA DMA

display NIC

I/O ctrl

System (I/O) busMemory bus

CPU/$

bridge

CPU/$

OS

Application Application Application Application

Operating System (OS) and User Apps

• Sane system development requires a split

• Operating System (OS): a super-privileged process

• Manages hw resource allocation/revocation for all processes

• Has direct access to resource allocation features

• Aware of: many nasty hardware details, other processes

• Talks directly to input/output devices (device driver software)

• User-level apps: ignorance is bliss

• Unaware of: most nasty hardware details, other apps, OS

• Explicitly denied access to resource allocation features

6

1 2

3 4

5 6

System Calls

System Call: a user-level app “function call” to OS

• Leave description of what you want done in registers

• SYSCALL instruction (also called TRAP or INT)

• User-level apps not allowed to invoke arbitrary OS code

• Restricted set of legal OS addresses to jump to (trap
vector)

1. Processor jumps to OS via trap vector (begin privileged

mode)

2. OS performs operation

3. OS does a “return from system call” (end privileged mode)

7

Interrupts
Exceptions: synchronous, generated by running app

• E.g., illegal instruction, divide by zero, etc.
Interrupts: asynchronous events generated externally

• E.g., timer, I/O request/reply, etc.

Timer: programmable on-chip interrupt
• Initialize with some number of micro-seconds
• Timer counts down and interrupts when reaches 0

“Interrupt” handling: same mechanism for both
• “Interrupts” are on-chip signals/bits

• Either internal (e.g., timer, exceptions) or from I/O devices

• Processor continuously monitors interrupt status, when true…
• HW jumps to some preset address in OS code (interrupt vector)
• Like an asynchronous, non-programmatic SYSCALL

8

Virtualizing Processors

How do multiple apps (and OS) share the processors?
Goal: applications think there are an infinite # of processors

Solution: time-share the resource
• Trigger a context switch at a regular interval (~1ms)

• Pre-emptive: app doesn’t yield CPU, OS forcibly takes it

+ Stops greedy apps from starving others

• Architected state: PC, registers
• Save and restore them on context switches
• Memory state?

• Non-architected state: caches, predictor tables, etc.
• Ignore or flush

• Operating System responsible for handling context switching
• Hardware support is just a timer interrupt

9

Motivations for Virtual Memory
• Use Physical DRAM as a Cache for the Disk

• Address space of a process can exceed physical memory size

• Sum of address spaces of multiple processes can exceed
physical memory

• Simplify Memory Management

• Multiple processes resident in main memory

• Each process with its own address space

• Only “active” code and data is actually in memory

• Allocate more memory to process as needed

• Provide Protection

• One process can’t interfere with another

• because they operate in different address spaces

• User process cannot access privileged information

• different sections of address spaces have different permissions

Levels in Memory Hierarchy

CPU

regs

C

a

c

h

e

Memory disk

size:

speed:

$/Mbyte:

line size:

32 B

1 ns

8 B

Register Cache Memory Disk Memory

32 KB-4MB

2 ns

$125/MB

32 B

1024 MB

30 ns

$0.20/MB

4 KB

100 GB

8 ms

$0.001/MB

larger, slower, cheaper

8 B 32 B 4 KB

cache virtual memory

Virtualizing Main Memory
How do multiple apps (and the OS) share main memory?
Goal: each application thinks it has private memory

App’s insn/data footprint > main memory ?
• Requires main memory to act like a cache

• With disk as next level in memory hierarchy (slow)
• Write-back, write-allocate, large blocks or “pages”

Solution:
• Part #1: treat memory as a “cache”
• Part #2: add a level of indirection (address translation)

12

Parameter I$/D$ L2 Main Memory

thit 2ns 10ns 30ns

tmiss 10ns 30ns 10ms (10M ns)

Capacity 8–64KB 128KB–2MB 64MB–64GB

Block size 16–32B 32–256B 4+KB

Assoc./Repl. 1–4, NMRU 4–16, NMRU Full, “working set”

7 8

9 10

11 12

A System with Physical Memory Only

Examples:
• most Cray machines, early PCs, many embedded systems, etc.

Addresses generated by the CPU correspond directly to bytes in physical

memory

CPU

1:

N-1:

Memory

Physical

Addresses
0:

A System with Virtual Memory

Examples:
• workstations, servers, modern PCs, etc.

Address Translation: Hardware converts virtual addresses to physical

addresses via OS-managed lookup table (page table)

CPU

1:

N-1:

0:

Memory

0:
1:

P-1:

Page Table

Disk

Virtual

Addresses
Physical

Addresses

Page Faults (like “Cache Misses”)

• What if an object is on disk rather than in memory?

• Page table entry indicates virtual address not in memory

• OS exception handler invoked to move data from disk into
memory

• current process suspends, others can resume

• OS has full control over placement, etc.

CPU

Memory

Page Table

Disk

Virtual
Addresses

Physical
Addresses

CPU

Memory

Page Table

Disk

Virtual
Addresses

Physical
Addresses

Before fault After fault

Virtual Memory (VM)

• Programs use virtual addresses (VA)
• 0…2N–1
• VA size also referred to as machine size
• E.g., 32-bit (embedded) or 64-bit (server)

• Memory uses physical addresses (PA)
• 0…2M–1 (typically M<N, especially if N=64)
• 2M is most physical memory machine

supports

• VA→PA at page granularity (VP→PP)
• By “system” (OS + HW)
• Mapping need not preserve contiguity
• VP need not be mapped to any PP

• Unmapped VPs live on disk (swap)

16

…

…

Disk

Program

Main Memory

code heap stack

Virtual Memory (VM)

Virtual Memory (VM):

• Level of indirection

• Application generated addresses are virtual addresses (VAs)

• Each process thinks it has its own 2N bytes of address space

• Memory accessed using physical addresses (PAs)

• VAs translated to PAs at some coarse granularity

• OS controls VA to PA mapping for itself and all other processes

• Logically: translation performed before every insn fetch, load, store

• Physically: hardware acceleration removes translation overhead

17

…

OS

…

App1

…

App2

VAs

PAs (physical memory)

OS controlled VA→PA mappings

Uses of Virtual Memory
• Isolation and Multi-programming (Memory Management)

• Each app thinks it has 2N B of memory that starts @ 0

• Apps can’t read/write each other’s memory
• Can’t even address the other program’s memory!

• Protection
• Each page has read/write/execute permission set by OS
• Enforced by hardware

• Inter-process communication
• Map same physical pages into multiple virtual address spaces
• Or share files via the UNIX mmap() call

18

…

OS

…

App1

…

App2

13 14

15 16

17 18

Memory Management

• Multiple processes can reside in physical memory.

• How do we resolve address conflicts?

• what if two processes access something at the same
address?

kernel virtual memory

Memory mapped region

for shared libraries

runtime heap (via malloc)

program text (.text)

initialized data (.data)

uninitialized data (.bss)

stack

forbidden
0

%esp

memory invisible to

 user code

the “brk” ptr

Linux/x86

process

memory

image

Virtual

Address

Space for

Process 1:

Physical

Address

Space

(DRAM)

VP 1

VP 2

PP 2

Address Translation0

0

N-1

0

N-1
M-1

VP 1

VP 2

PP 7

PP 10

(e.g., read/only

library code)

Solution: Separate Virt. Addr. Spaces

• Virtual and physical address spaces divided into equal-
sized blocks

• blocks are called “pages” (both virtual and physical)

• Each process has its own virtual address space

• operating system controls how virtual pages as assigned to
physical memory

...

...

Virtual

Address

Space for

Process 2:

Protection
• Page table entry contains access rights information

• hardware enforces this protection (trap into OS if violation
occurs)

Page Tables

Process i:

Physical AddrRead? Write?

PP 9Yes No

PP 4Yes Yes

XXXXXXXNo No

VP 0:

VP 1:

VP 2:
•
•
•

•
•
•

•
•
•

Process j:

0:
1:

N-1:

Memory

Physical AddrRead? Write?

PP 6Yes Yes

PP 9Yes No

XXXXXXXNo No
•
•
•

•
•
•

•
•
•

VP 0:

VP 1:

VP 2:

19 20

21

	Slide 1: CSE 560 Computer Systems Architecture
	Slide 2: This Unit: Virtual Memory
	Slide 3: A Computer System: Hardware
	Slide 4: A Computer System: + App Software
	Slide 5: A Computer System: + OS
	Slide 6: Operating System (OS) and User Apps
	Slide 7: System Calls
	Slide 8: Interrupts
	Slide 9: Virtualizing Processors
	Slide 10: Motivations for Virtual Memory
	Slide 11: Levels in Memory Hierarchy
	Slide 12: Virtualizing Main Memory
	Slide 13: A System with Physical Memory Only
	Slide 14: A System with Virtual Memory
	Slide 15: Page Faults (like “Cache Misses”)
	Slide 16: Virtual Memory (VM)
	Slide 17: Virtual Memory (VM)
	Slide 18: Uses of Virtual Memory
	Slide 19: Memory Management
	Slide 20: Solution: Separate Virt. Addr. Spaces
	Slide 21: Protection

