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This Unit: Virtual Memory

• The operating system (OS)

• A super-application

• Hardware support for an OS

• Virtual memory

• Page tables and address translation

• TLBs and memory hierarchy issues
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A Computer System: Hardware

CPUs and memories 
• Connected by memory bus

I/O peripherals: storage, input, display, network, …
 (NIC = Network Interface Controller)

• With separate or built-in DMA (direct memory access) 
• Connected by system bus (which is connected to memory bus)
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A Computer System: + App Software

• Application software: computer must do something
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A Computer System: + OS

Operating System (OS): virtualizes hardware for apps

• Abstraction: provides services (e.g., threads, files, etc.)

+ Simplifies app programming model, raw hardware is nasty

• Isolation: gives each app illusion of private CPU, memory, I/O

+ Simplifies app programming model

+ Increases hardware resource utilization
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Operating System (OS) and User Apps

• Sane system development requires a split

• Operating System (OS): a super-privileged process

• Manages hw resource allocation/revocation for all processes

• Has direct access to resource allocation features

• Aware of: many nasty hardware details, other processes

• Talks directly to input/output devices (device driver software)

• User-level apps: ignorance is bliss

• Unaware of: most nasty hardware details, other apps, OS

• Explicitly denied access to resource allocation features
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System Calls

System Call: a user-level app “function call” to OS

• Leave description of what you want done in registers

• SYSCALL instruction (also called TRAP or INT)

• User-level apps not allowed to invoke arbitrary OS code 

• Restricted set of legal OS addresses to jump to (trap 
vector)

1. Processor jumps to OS via trap vector (begin privileged 

mode)

2. OS performs operation

3. OS does a “return from system call” (end privileged mode)
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Interrupts
Exceptions: synchronous, generated by running app

• E.g., illegal instruction, divide by zero, etc.
Interrupts: asynchronous events generated externally

• E.g., timer, I/O request/reply, etc.

Timer: programmable on-chip interrupt
• Initialize with some number of micro-seconds
• Timer counts down and interrupts when reaches 0

“Interrupt” handling: same mechanism for both
• “Interrupts” are on-chip signals/bits

• Either internal (e.g., timer, exceptions) or from I/O devices

• Processor continuously monitors interrupt status, when true…
• HW jumps to some preset address in OS code (interrupt vector)
• Like an asynchronous, non-programmatic SYSCALL
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Virtualizing Processors

How do multiple apps (and OS) share the processors?
Goal: applications think there are an infinite # of processors

Solution: time-share the resource
• Trigger a context switch at a regular interval (~1ms)

• Pre-emptive: app doesn’t yield CPU, OS forcibly takes it

+ Stops greedy apps from starving others

• Architected state: PC, registers
• Save and restore them on context switches
• Memory state?

• Non-architected state: caches, predictor tables, etc.
• Ignore or flush

• Operating System responsible for handling context switching
• Hardware support is just a timer interrupt
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Motivations for Virtual Memory
• Use Physical DRAM as a Cache for the Disk

• Address space of a process can exceed physical memory size

• Sum of address spaces of multiple processes can exceed 
physical memory

• Simplify Memory Management

• Multiple processes resident in main memory

• Each process with its own address space

• Only “active” code and data is actually in memory

• Allocate more memory to process as needed

• Provide Protection

• One process can’t interfere with another

• because they operate in different address spaces

• User process cannot access privileged information

• different sections of address spaces have different permissions

Levels in Memory Hierarchy
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Virtualizing Main Memory
How do multiple apps (and the OS) share main memory?
Goal: each application thinks it has private memory 

App’s insn/data footprint > main memory ?
• Requires main memory to act like a cache 

• With disk as next level in memory hierarchy (slow)
• Write-back, write-allocate, large blocks or “pages”

Solution: 
• Part #1: treat memory as a “cache”
• Part #2: add a level of indirection (address translation)
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Parameter I$/D$ L2 Main Memory

thit 2ns 10ns 30ns

tmiss 10ns 30ns 10ms (10M ns)

Capacity 8–64KB 128KB–2MB 64MB–64GB

Block size 16–32B 32–256B 4+KB

Assoc./Repl. 1–4, NMRU 4–16, NMRU Full, “working set”
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A System with Physical Memory Only

Examples:
• most Cray machines, early PCs, many embedded systems, etc.

Addresses generated by the CPU correspond directly to bytes in physical 

memory
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A System with Virtual Memory

Examples:
• workstations, servers, modern PCs, etc.

Address Translation: Hardware converts virtual addresses to physical 

addresses via OS-managed lookup table (page table)
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Page Faults (like “Cache Misses”)

• What if an object is on disk rather than in memory?

• Page table entry indicates virtual address not in memory

• OS exception handler invoked to move data from disk into 
memory

• current process suspends, others can resume

• OS has full control over placement, etc.
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Virtual Memory (VM)

• Programs use virtual addresses (VA)
• 0…2N–1
• VA size also referred to as machine size
• E.g., 32-bit (embedded) or 64-bit (server)

• Memory uses physical addresses (PA)
• 0…2M–1 (typically M<N, especially if N=64)
• 2M is most physical memory machine 

supports

• VA→PA at page granularity (VP→PP)
• By “system” (OS + HW)
• Mapping need not preserve contiguity
• VP need not be mapped to any PP

• Unmapped VPs live on disk (swap)
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Virtual Memory (VM):

• Level of indirection

• Application generated addresses are virtual addresses (VAs)

• Each process thinks it has its own 2N bytes of address space

• Memory accessed using physical addresses (PAs)

• VAs translated to PAs at some coarse granularity

• OS controls VA to PA mapping for itself and all other processes

• Logically: translation performed before every insn fetch, load, store

• Physically: hardware acceleration removes translation overhead

17

…

OS

…

App1

…

App2

VAs

PAs (physical memory)

OS controlled VA→PA mappings

Uses of Virtual Memory
• Isolation and Multi-programming (Memory Management)

• Each app thinks it has 2N B of memory that starts @ 0

• Apps can’t read/write each other’s memory
• Can’t even address the other program’s memory!

• Protection
• Each page has read/write/execute permission set by OS
• Enforced by hardware

• Inter-process communication
• Map same physical pages into multiple virtual address spaces
• Or share files via the UNIX mmap() call
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Memory Management

• Multiple processes can reside in physical memory.

• How do we resolve address conflicts?

• what if two processes access something at the same 
address?

kernel virtual memory
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Solution: Separate Virt. Addr. Spaces

• Virtual and physical address spaces divided into equal-
sized blocks

•  blocks are called “pages” (both virtual and physical)

• Each process has its own virtual address space

• operating system controls how virtual pages as assigned to 
physical memory

...

...
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Process 2:

Protection
• Page table entry contains access rights information

• hardware enforces this protection (trap into OS if violation 
occurs)

Page Tables
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