
CSE 560
Computer Systems Architecture

Superscalar

1

Remainder of CSE 560: Parallelism

• Last unit: pipeline-level parallelism

• Execute one instruction in parallel with decode of next

• Next: instruction-level parallelism (ILP)

• Execute multiple independent instructions fully in parallel

• Today: multiple issue

• In a few weeks: dynamic scheduling

• Extract much more ILP via out-of-order processing

• Data-level parallelism (DLP)

• Single-instruction, multiple data

• Ex: one instruction, four 16-bit adds (using 64-bit registers)

• Thread-level parallelism (TLP)

• Multiple software threads running on multiple cores

6

This Unit: Superscalar Execution

• Superscalar scaling issues

• Multiple fetch and branch prediction

• Dependence-checks & stall logic

• Wide bypassing

• Register file & cache bandwidth

• Multiple-issue designs

• Superscalar

• VLIW and EPIC (Itanium)

CPUMem I/O

System software

AppApp App

7

Scalar Pipeline and the Flynn Bottleneck

• So far we have looked at scalar pipelines:

1 instruction per stage (+ control speculation, bypassing, etc.)

– Performance limit (aka “Flynn Bottleneck”) is CPI = IPC = 1

– Limit is never even achieved (hazards)

– Diminishing returns from “super-pipelining”

 (hazards + overhead)

regfile

DI

B

P

8

Multiple-Issue Pipeline

• Overcome this limit using multiple issue

• Also called superscalar

• Two instructions per stage at once (or 3 or 4 or 8…)

• “Instruction-Level Parallelism (ILP)” [Fisher, IEEE TC’81]

• Today, typically “4-wide” (Intel Core 2, AMD Opteron)

• Some more (Power5 is 5-issue; Itanium is 6-issue)

• Some less (dual-issue is common for simple cores)

regfile

DI

B

P

9

Superscalar Pipeline Diagrams - Ideal

scalar 1 2 3 4 5 6 7 8 9 10 11 12
lw 0(r1)➔r2 F D X M W
lw 4(r1)➔r3 F D X M W
lw 8(r1)➔r4 F D X M W
add r14,r15➔r6 F D X M W
add r12,r13➔r7 F D X M W
add r17,r16➔r8 F D X M W
lw 0(r18)➔r9 F D X M W

2-way superscalar 1 2 3 4 5 6 7 8 9 10 11 12
lw 0(r1)➔r2 F D X M W
lw 4(r1)➔r3 F D X M W
lw 8(r1)➔r4 F D X M W
add r14,r15➔r6 F D X M W
add r12,r13➔r7 F D X M W
add r17,r16➔r8 F D X M W
lw 0(r18)➔r9 F D X M W

10

1 6

7 8

9 10

Superscalar Pipeline Diagrams - Realistic

scalar 1 2 3 4 5 6 7 8 9 10 11 12
lw 0(r1)➔r2 F D X M W
lw 4(r1)➔r3 F D X M W
lw 8(r1)➔r4 F D X M W
add r4,r5➔r6 F d* D X M W
add r2,r3➔r7 F D X M W
add r7,r6➔r8 F D X M W
lw 0(r8)➔r9 F D X M W

2-way superscalar 1 2 3 4 5 6 7 8 9 10 11 12
lw 0(r1)➔r2 F D X M W
lw 4(r1)➔r3 F D X M W
lw 8(r1)➔r4 F D X M W
add r4,r5➔r6 F d* d* D X M W
add r2,r3➔r7 F p* D X M W
add r7,r6➔r8 F D X M W
lw 0(r8)➔r9 F d* D X M W

11

Superscalar CPI Calculations
• Base CPI for scalar pipeline is 1

• Base CPI for N-way superscalar pipeline is 1/N

– Amplifies stall penalties

• Assumes no data stalls (an overly optimistic assumption)

• Example: Branch penalty calculation

• 20% branches, 75% taken, no explicit branch prediction

• Scalar pipeline

• 1 + 0.2 x 0.75 x 2 = 1.3 → 1.3/1 = 1.3 → 30% slowdown

• 2-way superscalar pipeline

• 0.5 + 0.2 x 0.75 x 2 = 0.8 → 0.8/0.5 = 1.6 → 60% slowdown

• 4-way superscalar

• 0.25 + 0.2 x 0.75 x 2 = 0.55 → 0.55/0.25 = 2.2 → 120%
slowdown

12

A Typical Dual-Issue Pipeline (1)

• Fetch an entire 16B or 32B cache block

• 4 to 8 instructions (assuming 4-byte fixed length instructions)

• Predict a single branch per cycle

• Parallel decode

• Need to check for conflicting instructions

• Output of I1 is an input to I2

• Other stalls, too (for example, load-use delay)

regfile

DI

B

P

13

A Typical Dual-Issue Pipeline (2)

• Multi-ported register file

• Larger area, latency, power, cost, complexity

• Multiple execution units

• Simple adders are easy, but bypass paths are expensive

• Memory unit

• 1 load per cycle (stall at decode) probably okay for dual issue

• Alternative: add a read port to data cache

• Larger area, latency, power, cost, complexity

regfile

DI

B

P

14

Superscalar Challenges - Front End
• Wide instruction fetch

• Modest: need multiple instructions per cycle

• Aggressive: predict multiple branches

• Wide instruction decode

• Replicate decoders

• Wide instruction issue

• Determine when instructions can proceed in parallel

• Not all combinations possible

• More complex stall logic - order N2 for N-wide machine

• Wide register read

• One port for each register read

• Each port needs its own set of address and data wires

• Example, 4-wide superscalar ➔ 8 read ports

15

Superscalar Challenges - Back End

• Wide instruction execution

• Replicate arithmetic units

• Perhaps multiple cache ports

• Wide bypass paths

• More possible sources for data values

• Order (N2 x P) for N-wide machine, execute pipeline depth P

• Wide instruction register writeback

• One write port per instruction that writes a register

• Example, 4-wide superscalar ➔ 4 write ports

• Fundamental challenge:

• Amount of ILP (instruction-level parallelism) in the program

• Compiler must schedule code and extract parallelism

16

11 12

13 14

15 16

How Much ILP is There?

• The compiler tries to “schedule” code to avoid stalls

• Hard for scalar machines (to fill load-use delay slot)

• Even harder to schedule multiple-issue (superscalar)

• Even given unbounded ILP, superscalar has limits

• IPC (or CPI) vs clock frequency trade-off

• Given these challenges, what is reasonable N? 3 or 4
today

17

Wide Decode

• What is involved in decoding multiple (N) insns per cycle?

• Actually doing the decoding?

• Easy if fixed length (multiple decoders), doable if variable

• Reading input registers?

– 2N register read ports (latency  #ports)

+ Actually < 2N, most values come from bypasses (more later)

• What about the stall logic?

regfile

20

N2 Dependence Cross-Check

• Stall logic for 1-wide pipeline with full bypassing

• Full bypassing → load/use stalls only

X/M.op==LOAD && (D/X.rs1==X/M.rd || D/X.rs2==X/M.rd)

• Two “terms”:  2N

• Now: same logic for a 2-wide pipeline

X/M1.op==LOAD && (D/X1.rs1==X/M1.rd || D/X1.rs2==X/M1.rd) ||

X/M1.op==LOAD && (D/X2.rs1==X/M1.rd || D/X2.rs2==X/M1.rd) ||

X/M2.op==LOAD && (D/X1.rs1==X/M2.rd || D/X1.rs2==X/M2.rd) ||

X/M2.op==LOAD && (D/X2.rs1==X/M2.rd || D/X2.rs2==X/M2.rd)

• Eight “terms”:  2N2

• N2 dependence cross-check

• Not quite done, also need

• D/X2.rs1==D/X1.rd || D/X2.rs2==D/X1.rd

21

Wide Execute

• What is involved in executing N insns per cycle?

• Multiple execution units … N of every kind?

• N ALUs? OK, ALUs are small

• N FP dividers? No, FP dividers are huge, fdiv is uncommon

• How many branches/cycle? How many loads/stores /cycle?

• Typically mix of functional units proportional to insn mix

• Intel Pentium: 1 any + 1 ALU

• Alpha 21164: 2 integer (including 2 loads) + 2 FP

22

Wide Memory Access

• What about multiple loads/stores per cycle?

• Probably only necessary on processors 4-wide or wider

• More important to support multiple loads than stores

• Insn mix: loads (~20–25%), stores (~10–15%)

• Alpha 21164: two loads or one store per cycle

D$

23

Wide Register Read/Write

• How many register file ports to execute N insns per cycle?

• Nominally, 2N read + N write (2 read + 1 write per insn)

– Latency, area  #ports2

• In reality, fewer than that

• Read ports: many values from bypass network, immediates

• Write ports: stores, branches (35% insns) don’t write registers

• Replication works great for regfiles (used in Alpha 21164)

regfile

24

17 20

21 22

23 24

Wide Bypass

• N2 bypass network

– N+1 input muxes at each ALU input

– N2 point-to-point connections

– Routing lengthens wires

– Expensive metal layer crossings

• And this is just one bypass stage (MX)!

• There is also WX bypassing

• Even more for deeper pipelines

• One of the big problems of superscalar

• Implemented as bit-slicing

• 64 1-bit bypass networks

• Mitigates routing problem somewhat

25

Not All N2 Created Equal

• N2 bypass vs. N2 stall logic & dependence cross-check

• Which is the bigger problem?

• N2 bypass … by far

• 32- or 64- bit quantities (vs. 5-bit)

• Multiple bypass levels (MX, WX) vs. 1 level of stall logic

• Must fit in one clock period with ALU (vs. not)

• Dependence cross-check not even 2nd biggest N2 problem

• Regfile also N2 problem (think latency where N is #ports)

• And also more serious than cross-check

26

Avoid N2 Bypass/RegFile: Clustering

Clustering: group ALUs into K clusters
• Full bypassing within cluster, limited bypassing between clusters

• Get values from regfile with 1-2 cycle delay

+ N/K non-regfile inputs at each mux, N2/K point-to-point paths

• Key to performance: steering dependent insns to same cluster

• Hurts IPC, helps clock frequency (or wider issue at same clock)

• Typically uses replicated register files (1 per cluster)
• Alpha 21264: 4-way superscalar, two clusters

DM

RF0

RF1

cluster 0

cluster 1

27

Wide Non-Sequential Fetch
• Two related questions

• How many branches predicted per cycle?

• Can we fetch across the branch if it is predicted “taken”?

• Simplest, most common organization: “1” and “No”

• 1 prediction, discard post-branch insns if prediction is “taken”

– Lowers effective fetch width and IPC

• Average number of instructions per taken branch?

• Assume: 20% branches, 50% taken → ~10 instructions

• Consider: 10-instruction loop body with an 8-issue processor

• Without smarter fetch, ILP is limited to 5 (not 8)

• Compiler can help

• Reduce taken branch frequency (e.g., unroll loops)

28

Parallel Non-Sequential Fetch

• Allowing “embedded” taken branches is possible

• Requires smart branch predictor, multiple I$ accesses/cycle

• Can try pipelining branch prediction and fetch

• Branch prediction stage only needs PC

• Transmits two PCs to fetch stage, next PC and next-next PC

– Elongates pipeline, increases branch penalty

• Pentium II & III do something like this

• Another option: loop cache

I$

b0

I$

b1

B

P

29

Multiple-issue CISC
• How do we apply superscalar techniques to CISC?

• Break “macro-ops” into “micro-ops”

• Also called “ops” or “RISC-ops”

• A typical CISCy instruction “add [r1], [r2] ➔ [r3]”
becomes:
• Load [r1] ➔ t1 (t1 = temp. register, not visible to sw)

• Load [r2] ➔ t2

• Add t1, t2 ➔ t3

• Store t3➔[r3]

• Internal pipeline manipulates only RISC-like instructions

• But, conversion can be expensive (latency, area, power)

• Solution: cache converted instructions in trace cache

30

25 26

27 28

29 30

Multiple-Issue Implementations
• Statically-scheduled (in-order) superscalar

+ Executes unmodified sequential programs
– Hardware must figure out what can be done in parallel
• E.g., Pentium (2-wide), UltraSPARC (4-wide), Alpha 21164

(4-wide)
• Very Long Instruction Word (VLIW)

+ Hardware can be dumb and low power
– Compiler must group parallel insns, requires new binaries

• E.g., TransMeta Crusoe (4-wide)
• Explicitly Parallel Instruction Computing (EPIC)

• A compromise: compiler does some, hardware does the rest
• E.g., Intel Itanium (6-wide)

• Dynamically-scheduled superscalar
• Pentium Pro/II/III (3-wide), Alpha 21264 (4-wide)

• We’ve already talked about statically-scheduled superscalar

31

VLIW

• Hardware-centric multiple issue problems:

– Wide fetch+ br. prediction, N2 bypass, N2 dependence checks

– HW solutions: clustering, trace cache

• Software-centric: very long insn word (VLIW)

• Effectively, a 1-wide pipeline, but unit is an N-insn group

• Compiler guarantees insns within group are independent
• Gaps filled with nops

• Group travels down pipeline as a unit
+ Simplifies pipeline control (no rigid vs. fluid business)

+ Cross-checks within a group un-necessary

• Downstream cross-checks still necessary

• Typically “slotted”: 1st insn must be ALU, 2nd mem, etc.
+ Further simplification

32

History of VLIW

• Started with “horizontal microcode”

• Academic projects

• Yale ELI-512 [Fisher, ‘85]

• Illinois IMPACT [Hwu, ‘91]

• Commercial attempts

• Multiflow [Colwell+Fisher, ‘85] → failed

• Cydrome [Rau, ‘85] → failed

• Motorolla/TI embedded processors → successful

• Intel Itanium [Fisher+Rau, ‘97] → ?? 

• Transmeta Crusoe [Ditzel, ‘99] → mostly failed

33

What Does VLIW Actually Buy You?

+ Simpler I$/branch prediction

+ Simpler dependence check logic

• Doesn’t help bypasses or regfile

• Which are the much bigger problems!

• Although clustering and replication can help VLIW, too

– Not compatible across machines of different widths

• Is non-compatibility worth all of this?

• How did TransMeta deal with compatibility problem?

• Dynamically translates x86 to internal VLIW

34

Trends in Single-Processor Multiple Issue

• Issue width saturated at 4-6 for high-performance cores

• Canceled Alpha 21464 was 8-way issue

• No justification for going wider

• HW or compiler “scheduling” needed to exploit 4-6 effectively

• Out-of-order execution (or VLIW/EPIC)

• For high-performance per watt cores, issue width is ~2

• Advanced scheduling techniques not needed

• Multi-threading (a little later) helps cope with cache misses

486 Pentium PentiumII Pentium4 Itanium ItaniumII Core2

Year 1989 1993 1998 2001 2002 2004 2006

Width 1 2 3 3 3 6 4

37

31 32

33 34

37

	Slide 1: CSE 560 Computer Systems Architecture
	Slide 6: Remainder of CSE 560: Parallelism
	Slide 7: This Unit: Superscalar Execution
	Slide 8: Scalar Pipeline and the Flynn Bottleneck
	Slide 9: Multiple-Issue Pipeline
	Slide 10: Superscalar Pipeline Diagrams - Ideal
	Slide 11: Superscalar Pipeline Diagrams - Realistic
	Slide 12: Superscalar CPI Calculations
	Slide 13: A Typical Dual-Issue Pipeline (1)
	Slide 14: A Typical Dual-Issue Pipeline (2)
	Slide 15: Superscalar Challenges - Front End
	Slide 16: Superscalar Challenges - Back End
	Slide 17: How Much ILP is There?
	Slide 20: Wide Decode
	Slide 21: N2 Dependence Cross-Check
	Slide 22: Wide Execute
	Slide 23: Wide Memory Access
	Slide 24: Wide Register Read/Write
	Slide 25: Wide Bypass
	Slide 26: Not All N2 Created Equal
	Slide 27: Avoid N2 Bypass/RegFile: Clustering
	Slide 28: Wide Non-Sequential Fetch
	Slide 29: Parallel Non-Sequential Fetch
	Slide 30: Multiple-issue CISC
	Slide 31: Multiple-Issue Implementations
	Slide 32: VLIW
	Slide 33: History of VLIW
	Slide 34: What Does VLIW Actually Buy You?
	Slide 37: Trends in Single-Processor Multiple Issue

