CSE 560
Computer Systems Architecture

Static Scheduling

This Unit: Static Scheduling

App
System software

» Code scheduling to
» Reduce pipeline stalls

¢ Increase ILP

Two approaches to scheduling

+ This Unit:
« Static scheduling by the compiler
» Coming Soon:
« Dynamic scheduling by the
hardware

Code Scheduling

» Scheduling: act of finding independent instructions
« Static: at compile time by the compiler (software)
« Dynamic: at runtime by the processor (hardware)

» Why schedule code?
 Scalar pipelines: fill load-to-use delays to improve CPI
» Superscalar: place independent instructions together
« As above, load-to-use delay slots
« Allow multiple-issue decode logic to let them execute at
the same time

Scheduling Requirements

Independent insns

* no ILP - game over
Large Scheduling Scope

» Scope = code region we are scheduling

» The bigger the better (more independent insns to play with)
» Once scope is defined, schedule is pretty obvious

« Trick is creating a large scope (schedule across branches?)
Enough registers

+ To hold additional “live” values

Alias analysis

» Whether load/store reference same memory locations

« Can they be legally rearranged?

Scheduling Techniques

+ Stall Removal
+ Separate load-use pairs

+ Scope enlarging
« For Loops: loop unrolling
» For Non-loops:
» Superblocks
* Predication

+ Exploit Data-Level Parallelism
« Vectors

New Metric: Utilization

Utilization: actual performance / peak performance
+ Important metric for performance/cost
+ Why pay for hardware you rarely use?

+ Adding hardware usually T performance, lutilization
» New hardware cannot always be exploited
« Diminishing marginal returns

« Compiler can help make better use of existing hardware
+ Important for superscalar

Running Code Example: SAXPY

» SAXPY (Single-precision A X Plus Y)
« Linear algebra routine (for solving systems of equations)
« Part of early Livermore Loops benchmark suite
« floating point uses “F” registers and “F” instructions

for (i=0;i<N;i++)
Z[i]=(A*X[i])+Y[i];

0: 1df X(rl)=>fl // loop LOAD1
1: mulf £0,f1P£2 // A in £0 USEL
2: 1df Y(rl)=>£f3 // X,Y,Z constants LOAD2
3: addf £2,£39f4 USE2
4: stf £497(rl)

5: addi rl,49rl // i in rl

6: blt rl,r2,0 // N*4 in r2

SAXPY Performance and Utilization

1 2 3 45/6 7 8 910111213141516/17 181920
1df X(r1)P£f1 [F D X M W
mulf £0,£1Df2 F D d* EX|E* EX E* E* W
1df Y(rl)P£3 Fp*D|X MW
addf £2,£39f4 F|d* d* d* D E+E+ W
stf £49z(rl) F p*p*p*D X MW
addi rl,49rl FDXMW
blt rl,r2,0 FDXMW
1df X(rl)D£fl FDXMW

Scalar pipeline

« Full bypassing, 5-cycle E*, 2-cycle E+, predict branches taken
« Single iteration (7 insns) latency: 16—5 = 11 cycles

« Performance: 7 insns / 11 cycles = 0.64 IPC

« Utilization: actual/peak IPC = 0.64 / 1 = 64%

A word about stalls
+ mulf stalls due to a data dependence on 1df x
* 1df Y stalls due to a pipeline hazard because mul£ is occupying D

SAXPY Performance and Utilization

6 7 8 9 10111213 1415[16 17 18 19 20

-

1df (1) £l [F
mulf £0,£1)£2|F
1df Y (rl)D£3
addf £2,£39£4

EX* E¥ EX E* W

w

d* d* d* D E+E+ W

stf £49z(rl) d¥d*d¥*d*D X MW

addi rl,4drl p*p*p*p*p* D X M
D X
D X

3 IN
TN FTE|w

*

MmO oO|N
nT 0% x|w

o]
*

blt rl,r2,0 p* p* p* p* p* d*
1df X(rl)Df1 3

W
MW
Mw

2-way superscalar pipeline

« Any two insns per cycle + split integer and FP pipelines
+ Performance: 7 insns / 10 cycles = 0.70 IPC

— Utilization: actual/peak IPC = 0.70 / 2 = 35%

— More hazards — more stalls

— Each stall is more expensive

10

Eliminate Load-Use Pairs?

for (i=0;i<N;i++)
Z[i]=(A*X[i])+Y[i];

: 1df X(rl)=fl1 LOAD1
: 1df Y(rl)=>£3 LOAD2
: mulf £0,f1=»f2 USE1l
: addf f£2,£39f4 USE2
: stf £492Z(rl)

: addi rl,4=>rl

: blt rl,r2,0

: 1df X(rl)=fl LOAD1

: mulf £0,f1>£2 USE1><
: 1df Y(rl)=£f3 LOAD2

: addf f£2,£39f4 USE2

: stf £492(rl)

: addi rl,49rl
: blt rl,r2,0

ouUh WwN O
oU s WwHENO

Problem solved?

11

Loop Unrolling SAXPY

+ Goal: separate dependent insns from one another
» SAXPY problem: not enough flexibility within one iteration
« Longest chain of insns is 9 cycles
« Load (1)
« Forward to multiply (5)
« Forward to add (2)
« Forward to store (1)
— Can't hide a 9-cycle chain using only 7 insns
+ But how about two 9-cycle chains using 14 insns?
« Loop unrolling: schedule 2+ iterations together
« Fuse iterations
+ Schedule to reduce stalls
» Schedule introduces ordering problems - rename registers

12

Unrolling SAXPY I: Fuse Iterations

+ Combine two (in general K) iterations of loop
« Fuse loop control: induction variable (i=r1) increment + branch
« Adjust (implicit) induction uses: constants — constants + 4

1df X(rl),fl 1df X(rl), fl
mulf £0,£1,£2 mulf £0,£1,£2
1df ¥ (rl), £3 1df Y(rl),£3
addf f£2,£3,f£4 addf f£2,£3,f4
stf £4,2(rl) stf £4,2(rl)
addi rl,4,rl -- increment i —

blt rl,r2,0 -- jump back

1df X(rl), £l 1df X+4(rl),f1
mulf £0,£1,£2 mulf £0,f1,£2
1df Y(rl),£f3 1df y+4(rl) , £3
addf f£2,£3,f4 addf f£2,f£3,£f4
stf £4,%Z(rl) stf £4,Z+4(rl)
addi rl,4,rl -- increment i addi r1,8,rl
blt rl,r2,0 -- jump back blt rl,r2,0

13

14

Unrolling SAXPY II: Pipeline Schedule

« Pipeline schedule to reduce stalls
+ Have already seen this: pipeline scheduling

1df X(rl),fl
mulf £0,f1,£2
1df Y(rl),£3
addf £2,£3,f4
stf £4,2z(rl)
1df X+4(rl), £l
mulf £0,f£1,£2
1df Y+4(rl),£3
addf £2,£3,f4
stf £4,2+4 (rl)
addi r1,8,rl
blt r1,r2,0

1df X(rl),fl
1df X+4(rl), £l
mulf £0,£1,£2
mulf £0,fl,£2
1df Y(rl), £3
1df Y+4(rl),£3
addf f£2,f£3,f4
addf £2,£3,f4
stf £4,z(rl)
stf £4,Z+4(rl)
addi r1,8,rl
blt rl1,r2,0

—

Unrolling SAXPY III: “Rename” Registers

» Pipeline scheduling causes reordering violations
« Rename registers to correct

1df X(r1),£1 proplem!
1df X+4(rl),fl
mulf £0,fl,£f2
mulf £0,f1,f£2

1df X(rl), £l

1df X+4(rl),£5
mulf £0,£1,£2
mulf £0,£5,£6

1df Y (rl),£3 1df Y(rl),£3 Do we have
1df Y+4(rl),£3 1df Y+4(rl) ,£7 f
addf £2,£3,¢4 — aar £2,£3,64 enough reg_lsters
addf £2,£3,£4 addf £6,£7,£8 to do this?

stf £4,Z(rl)
stf £4,Z+4(rl)
addi r1,8,rl
blt rl,r2,0

stf £4,z(rl)
stf £8,Z+4(rl)
addi r1,8,rl
blt rl,r2,0

Are we sure we can move these loads above these stores?
Alias analysis must be conservative.

15

16

Unrolled SAXPY Performance/Utilization

1 2 3 45|67 8 9101112131415161718/1920
1df X(r1)Pf1 [F D X M W
1df x+4(r1)d£5 F D X M|W
mulf £0,f1)£2 F D EX|E*E*E*E* W
mulf £0,£5D£6 F D|E*E*E*E*E* W Structural Hazard
1df Y(rl)D£3 FID X MW e
1df Y+4 (rl)=D£7| F DX Ms*s*W
addf £2,£39£4 F D d*E+E+s* W
addf £6,£7)£8 F p* D E+p*E+ W
stf £492z(rl) FDXMW
stf £8D2Z+4(rl) FDXMW
addi r198,rl FDXMW
blt rl,r2,0 FDXMW
1df X(rl)=D>£fl FDXMW

+ Performance: 12 insn / 13 cycles = 0.92 IPC

+ Utilization: actual/peak IPC = 0.92 /1 = 92%

+ Speedup: (2 * 11 cycles) / 13 cycles = 1.69

? But improvement in IPC is only 0.92/0.64 = 1.43, what gives? =

Loop Unrolling Shortcomings

— Static code growth — more I$ misses (limits unrolling)

— Needs more registers to hold values (ISA limits this)

— Doesn't handle: non-loops, inter-iteration dependences
for (i=0;i<N;i++)

X[i]=A*X[i-1];

1df X-4(rl),fl
mulf £0,f1,£2
stf £2,X(rl)
addi rl,4,rl
blt rl,r2,0
1df X-4(rl),fl
mulf £0,£f1,£2
stf £2,X(rl)
addi rl,4,rl
blt rl,r2,0

1df X-4(rl),fl
mulf £0,£1,£2
—l stf £2,X(rl)
mulf £0,£2,£3
stf £3,X+4(rl)
addi rl,4,rl
blt rl,r2,0

e Twomulf'’s are not parallel
o Other (more advanced) techniques help

17

18

Summary: Static Scheduling Limitations
+ Limited number of registers (set by ISA)

+ Scheduling scope
« Example: hard to move memory insns past branches

+ Inexact memory aliasing information
« Often prevents reordering of loads above stores

+ Caches misses (or any runtime event) confound scheduling
» How can the compiler know which loads will miss/hit?
+ Can impact the compiler’s scheduling decisions

Scheduling Techniques

 Stall Removal
» Separate load-use pairs

» Scope enlarging
+ For Loops: loop unrolling
» For Non-loops:
» Superblocks (biased branches)
« Predication (non-biased branches)

« Exploit Data-Level Parallelism
+ Vectors

19

20

Superblocks

4 basic blocks: A,B,C,D

Source code

A= vYI[i]; A 0: 1df Y(rl),f2

if (A == 0) 1: fbne f2,4
A = W[i]; NT=5% T=95%

else 2: 1df wW(rl),f2 4: stf £0,Y(rl) | C
Y[i] = 0; B 3: jump 5

Z[i] = A*X[i]

1df X(rl),f4

. 5:
Machine code D |6: mulf f£4,f2,f6
7

0: 1df Y(rl),f2 : stf £6,7(rl)

1: fbne f2,4

if j%iripwé“’ +£2 1« Use when branch is highly biased

4: stf £0,v(r1) | * Fuse blocks of most frequent path: ACD

5: 1df X(rl),f4 . S h d I

6: mulf f4,f2,f6 chedule

7: stf £6,2(xr1) | « Create repair code in case path = ABD
21

Superblocks Scheduling I

Superblock

0: 1df Y(rl), f2 .

1: fbeq £2,2 Repair code

5: 1df X(rl),fd 2: ldf W(rl),f2

6: 57: 1df X(rl),f4
4: 6’: mulf f4,f£2,f6
7: 77 stf £6,2(rl)

« First scheduling move: move insns 5 and 6 above insn 4
* Hmmm: moved load (5) above store (4)
» We can tell this is OK, but can the compiler
- If yes, fine
+ Otherwise, need to do something

23

Avoiding Branches via ISA: Predication

« Conventional control

+ Conditionally executed insns also conditionally fetched
1 2 3 4 5 6 7 8 9

beq r3,targ F D X M Ww

sub r6,1,r5 F D -- == == flushed: wrong path
targ:add r4,r5,rd F == == == == flushed: why?
targ:add r4,r5,r4 F D X M W

 If beq mis-predicts, both sub and add must be flushed
— Waste: add is independent of mis-prediction
» Predication: not prediction, predication
« ISA support for conditionally-executed unconditionally-fetched insns
« If beq mis-predicts, annul sub in place, preserve add
« Example is if-then, but if-then-else can be predicated too
* How is this done? How does add get correct value for x5

Superblock and Repair Code

Superblock

0: 1df Y(rl),f2

1: fbeq £2,2 Repair code

4: stf £0,Y(rl) 2: 1df W(rl),f2

5: 1df X(rl),f4 57: 1df X(rl), f4
6: mulf f4,f2,f6 6’: mulf f4,f2,f6
7: stf £6,2(rl) 7': stf £6,2%(rl)

» What did we do?
« Change sense (test) of branch 1
« Original taken target now fall-thru
 Created repair block
« May need to duplicate some code (here basic-block D)
» Haven't actually scheduled superblock yet

22

Predication

+ Conventional control
« Conditionally executed insns also conditionally fetched
+ Predication
+ Conditionally executed insns unconditionally fetched
» Full predication (ARM, IA-64)
+ Tag every insn with predicate, costs extra bits
» Conditional moves (Alpha, IA-32)
« Construct appearance of full predication from one primitive
cmoveq rl,r2,r3 // if (rl==0) r3€r2;
— May require some code duplication to achieve desired effect
+ Only good way of adding predication to an existing ISA
If-conversion: replacing control with predication
+ Good if branch is unpredictable (save mis-prediction)
— But more instructions fetched and “executed”

24

Full Predication

25

Full predication
« Every insn can be annulled, annulment controlled by...
« Predicate registers: additional register in each insn (e.g., IA64)

1 2 3 4 5 6 7 8 9

setp.eq r3,p3 F D X M W
[sub.p z6,1,x5,p3 F D X - - annulled |
targ:add r4,r5,r4 F D X M W

Predicate codes: condition bits in each insn (e.g., ARM)

1 2 3 4 5 6 7 8 9
setcc r3 F D X M W
[sub.nz z6,1,25 F D X - - annulled |
targ:add r4,r5,r4 F D X M W

« Only ALU insn shown (sub), but this applies to all insns, even stores
« Branches replaced with “set-predicate” insns

26

Conditional Register Moves (CMOVs)

Conditional (register) moves
+ Construct appearance of full predication from one primitive
cmoveq rl,r2,r3 // if (rl1==0) r3€r2;
— May require some code duplication to achieve desired effect
— Painful, potentially impossible for some insn sequences
— Requires more registers
» Only good way of retro-fitting predication onto ISA
(e.g., IA32, Alpha)

1 2 3 4 5 6 7 8 9
sub r6,1,r9 F D X M W
cmovne r3,r9,r5 F D X M W
targ:add r4,r5,r4 F D X M W

Non-Biased Branches: Use Predication

A[0: 1df v(r1),£2
1: fbne f2,4
NT=50%—_ T=50%

Bl2: 1df w(rl),£2 4: stf £0,Y(rl) |C

3: jump 5
D[5: 1df x(rl),f4
6: mulf f4,f2,f6
7: stf £6,2(rl)
v

: 1df Y(rl),f2

Using Predication
: fspne f£2,pl

¢ 1df X(rl),f4
: mulf f4,f2,f6
: stf £6,2(rl)

27

ISA Support for Predication

T 1df Y(rl), f2
: fspne f2,pl

N o

0,Y(rl)
: 1df X(rl),f4

: mulf f4,f2,f6

stf £6,2(rl)

ko)
P

S o,

» IA-64: change branch 1 to set-predicate insn £spne
» Changeinsns 2 and 4 to predicated insns

+ 1df.p performs 1df if predicate p1l is true

+ stf.np performs stf if predicate pl is false

29

Aside: Profiling

How do we know whether a branch is biased or not?
Profile: statistical information about program tendencies
 Collect from previous program runs (different inputs)
+ Works OK depending on information
+ Memory latencies (cache misses)
+Which loads miss frequently independent of inputs?
— Depends on cache configuration
» Memory dependences
+ Which loads & stores communicate with each other?
+ Stable across inputs
+ Branch outcomes
» Which branches are usually taken/not-taken?
— Not so stable across inputs
« Popular research topic

31

28

Predication Performance

» Cost/benefit analysis
+ Benefit: predication avoids branches
« Thus avoiding mis-predictions
« Also reduces pressure on predictor table (few branches to track)
« Cost: extra (annulled) instructions
« Since branch predictors are highly accurate...
+ Might not help:
« 5-stage pipeline, two instruction on each path of if-then-else
» No performance gain, likely slower if branch predictable
» Or even hurt!
« But can help:
« Deeper pipelines, hard-to-predict branches, and few added insns
« Predication is useful, but not a panacea

30

Scheduling Techniques

Stall Removal
+ Separate load-use pairs

» Scope enlarging
 For Loops: loop unrolling

» For Non-loops:
» Superblocks (biased branches)
« Predication (non-biased branches)

« Exploit Data-Level Parallelism
 Vectors

32

Data-Level Parallelism

Data-level parallelism (DLP)
+ Single operation repeated on multiple data elements
» SIMD (Single-Instruction, Multiple-Data)
+ Less general than ILP: parallel insns are all same operation
« Exploit with vectors

Old idea: Cray-1 supercomputer from late 1970s
+ Eight 64-entry x 64-bit floating point “Vector registers”

» 4096 bits (0.5KB) in each register! 4KB vector register file
» Special vector instructions to perform vector operations

» Load vector, store vector (wide memory operation)

» Vector+Vector addition, subtraction, multiply, etc.

« Vector+Constant addition, subtraction, multiply, etc.

« In Cray-1, each instruction specifies 64 operations!

Example Vector ISA Extensions

Extend ISA with floating point (FP) vector storage ...
« Vector register: fixed-size array of 32- or 64- bit FP elements
» Vector length: For example: 4, 8, 16, 64, ...

+ ... and example operations for vector length of 4, 8-bit elements
e Load vector: 1df.v X(rl),vl =
1df X+0(rl) ,v1[0]
1df X+1(rl),vl[1]
1df X+2(rl) ,vl[2]
1df X+3(rl),v1[3]
« Add two vectors: addf.vv vl,v2,v3
addf v1[i],v2[i],v3[i] (where i is 0,1,2,3)
« Add vector to scalar: addf.vs vl1,£f2,v3
addf v1[i],£2,v3[i] (where i is 0,1,2,3)

34

33
Example Use of Vectors — 4-wide
1df X(rl),fl 1df.v X(rl) ,vl
mulf £0,f1,£2 mulf.vs vl,£0,v2
1df ¥(rl),£3 1df.v Y(rl),v3
addf £2,£3,f4 addf.vv v2,v3,vd
stf £4,zZ(rl) stf.v v4,Z(rl)
7X1024 | qgr T, 4, 7T 7x256 insns 3ddT 71,16, 7T
NSNS [p1ti rl,4096,0 (4x fewer insns) blti rl,4096,0

Operations
e Load vector: 1df.v X(rl),vl
* Multiply vector to scalar: mulf.vs v1,£2,v3
- Add two vectors: addf.vv vl,v2,v3
« Store vector: stf.v vl,X(rl)
Performance?
« If CPI = 1, 4x speedup
« CPI not always 1
« Execution width (implementation) # vector width (ISA)

Why Vectorization is Awesome

Have your cake and eat it, too

All the benefits of a wider machine, without superscalar costs
« Single instruction fetch

« Wide reads & writes (without multiple $ or redfile ports)

« Wider data to bypass # N2 bypass

Execution width (implementation) vs vector width (ISA)

« Example: Pentium 4 and Core 1 execute vector ops at half width
« Core 2 executes them at full width

« Intel’s Sandy Bridge brings 256-bit vectors to x86

« Intel’s Larrabee graphics chip brings 512-bit vectors to x86

Vector + superscalar? Sure!
< Multiple n-wide vector instructions per cycle

35

Scheduling: Compiler or Hardware

Compiler

+ Large scheduling scope (full program)

+ Simple hardware — fast clock, short pipeline, and low power

— Low branch prediction accuracy (profiling?)

— Little information on memory dependences (profiling?)

Can't dynamically respond to cache misses (or anything really)
— Hard to speculate, recover from mis-speculation (h/w support?)
Hardware

Finite buffering resources fundamentally limit scheduling scope
Scheduling machinery adds pipeline stages and consumes power
High branch prediction accuracy

Dynamic information about memory dependences

Can respond to cache misses

Easy to speculate and recover from mis-speculation

+ 4+ ++

37

36

	Slide 1: CSE 560 Computer Systems Architecture
	Slide 4: This Unit: Static Scheduling
	Slide 5: Code Scheduling
	Slide 6: Scheduling Requirements
	Slide 7: Scheduling Techniques
	Slide 8: New Metric: Utilization
	Slide 9: Running Code Example: SAXPY
	Slide 10: SAXPY Performance and Utilization
	Slide 11: SAXPY Performance and Utilization
	Slide 12: Eliminate Load-Use Pairs?
	Slide 13: Loop Unrolling SAXPY
	Slide 14: Unrolling SAXPY I: Fuse Iterations
	Slide 15: Unrolling SAXPY II: Pipeline Schedule
	Slide 16: Unrolling SAXPY III: “Rename” Registers
	Slide 17: Unrolled SAXPY Performance/Utilization
	Slide 18: Loop Unrolling Shortcomings
	Slide 19: Summary: Static Scheduling Limitations
	Slide 20: Scheduling Techniques
	Slide 21: Superblocks
	Slide 22: Superblock and Repair Code
	Slide 23: Superblocks Scheduling I
	Slide 24: Predication
	Slide 25: Avoiding Branches via ISA: Predication
	Slide 26: Full Predication
	Slide 27: Conditional Register Moves (CMOVs)
	Slide 28: Non-Biased Branches: Use Predication
	Slide 29: ISA Support for Predication
	Slide 30: Predication Performance
	Slide 31: Aside: Profiling
	Slide 32: Scheduling Techniques
	Slide 33: Data-Level Parallelism
	Slide 34: Example Vector ISA Extensions
	Slide 35: Example Use of Vectors – 4-wide
	Slide 36: Why Vectorization is Awesome
	Slide 37: Scheduling: Compiler or Hardware

