
CSE 560
Computer Systems Architecture

1

Spectre / Meltdown

Slides originally developed by Anthony Cabrera (Wash U)

This Unit: Two Security Vulnerabilities

• Side Channel Attacks

• What are they?

• Timing attacks

Two vulnerabilities today:

• Spectre

• Branch prediction

• Meltdown

• Exceptions

2

CPUMem I/O

System software

AppApp App

Spectre and Meltdown

• Two distinct forms of vulnerability

• Several variants, we will only discuss main ideas

• Both enable illegal accesses of memory

• I.e., reading memory that shouldn’t be accessible

• Both target microarchitectural features

• NOT software

• Both leverage speculative execution and caches

• Spectre targets branch prediction

• Meltdown targets exception handling

3

Terminology
What is a side channel attack?

• Function or characteristic of a system that discloses
unintended information

• Measuring the time to complete a sparse matrix-matrix
multiply tells you about the number of non-zeros

• Timing, power consumption, RF emissions, etc. are all
candidate side channels

What is a covert channel attack?

• Altering a system so that it will disclose information

• Installing a keystroke monitor can be used to learn
passwords prior to them being encrypted

• Spectre and Meltdown are both covert channel attacks

These labels are not uniformly used!

4

Timing Side Channel

• Want to know if address is cached

• Measure access time with high precision timer

• Uncached values take a long time to access

• Cached values take a short time to access

• Can be side channel (e.g., another core) or covert

5

Possibly cached addresses

Flush and Reload Attack

• Flush address from cache

• Conditionally reload address to cache

• Reload condition is what we want to learn

• Re-access address

• Fast access → address is cached

• Slow access → address is not cached

6

1 2

3 4

5 6

Spectre

• Exploit the branch predictor in OoO pipelines

• Train predictor to take one path

• Switch to other path and access illegal memory
(e.g., via out of bounds array access)

7

a
ct

u
a
l

Exploiting Branch Prediction

byte a[N];

int size_a = N;

byte b[256];

…

foo (int x){

 if (x < size_a)

 y = b[a[x]];

}

Do this many times (with good x) so branch predicts true

Next, flush b and size_a

Then call foo(bad_illegal_x)

• Result is b[a[bad_illegal_x]] is loaded into cache

• Even though if test ultimately fails!

8

Exploiting Branch Prediction

byte a[N];

int size_a = N;

byte b[256];

…

foo (int x){

 if (x < size_a)

 y = b[a[x]];

}

With size_a not in cache, if takes many cycles to resolve

Initially b not cached, but speculative execution puts one
entry of b into cache

• Use timing side channel to determine which entry cached

• That entry is value of a[bad_illegal_x]!

9

Notes about Spectre

• What if accessed address is protected?

 a[bad_illegal_x]

 might trigger exception!

• Nope, because bad load never commits

• It does trigger cache fill, however, which is the
problem

• Variant is indirect branch exploitation

• Train predictor to make speculative jump to bad code

• Bad code alters microarchitecture state (e.g., cache)

• Leak information via side channel

10

What addresses are vulnerable?

• Certainly addresses within same process:

 a[bad_illegal_x]

 can be any logical address readable by the process

• But what about other processes?

• Flush and reload must be in process (covert)

• Timing side channel can be another process

• And what about kernel memory?

• eBPF (extended Berkeley packet filter) is code
provided by user application that runs in kernel space

• Static analysis performed, but attack code looks good
wrt array bounds (they are explicitly checked)! 11

What machines are vulnerable?

• Any microarchitecture that has the following:

• Cache

• Out of order execution

• Branch prediction

• Manufacturers include

• Intel

• AMD

• Arm

• Others (including gem5 stock OoO model!)

12

7 8

9 10

11 12

OoO Simulation in gem5

13Credit to Jason Lowe-Power @ UC Davis

load size_a

if (x < size_a)

load a[x]

load b[a[x]]

f = fetch

d = dispatch
n = rename

p = dispatch

i = issue
c = complete

r = retire

“.” one clock cycle of normal execution

“=” instruction is eventually squashed

What can be done?

• Spectre mitigation is difficult

• It represents a whole class of vulnerabilities

• Disabling microarchitectural features has substantial
performance impact

• 14% slowdown reported by several groups

• Patches available for specific variants

14

Meltdown

• Exploits features of virtual memory

• Often, all of physical memory is mapped into user space
(and protected from user access) to speed system calls
(user → kernel transitions)

• Core idea is to access illegal memory and (like Spectre)
impact the cache state before load is rolled back

15

Exploit

• Processor attempts a load instruction

• Address is in protected memory

• The instruction issues, which triggers both:

1. Reading address from main memory

2. Checking the privilege bits in the virtual memory

• Privilege check fails, so load never commits

• By the time of the failure, cache can already be updated

• Value is now in cache, proceed to use timing side channel

• Same as Spectre here on out

16

What machines are vulnerable?

• Any microarchitecture that has the following:

• Cache

• Out of order execution

• Accessible page table concurrent with permission check

• Manufacturers include

• Intel

• Arm

• NOT AMD – check permissions when reading page table

17

What can be done?

• Meltdown mitigation is more straightforward

• Main memory read happens concurrently with privilege
check (which is a VM function)

• But main memory read requires access to page table

• Specifically, a page table entry that is in the kernel!

• Solution is to separate user and kernel space page tables

• Called “kernel page table isolation” or KPTI

• Access to kernel page table from user mode refuses to
provide physical address

• Therefore, it never gets cached
18

13 14

15 16

17 18

https://faculty.engineering.ucdavis.edu/lowepower/

Summary

• Both Spectre and Meltdown directly exploit speculative
execution (specifically OoO execution)

• Issue a load to an address that is not allowed

• Speculatively execute the load, putting the value in cache

• The load never commits, but the value is already cached

• Use a timing side channel attack to read the value in cache

• Mitigation is difficult because of large number of variants to
the general vulnerability

• A bit easier for Meltdown via page table isolation

19

19

	Slide 1: CSE 560 Computer Systems Architecture
	Slide 2: This Unit: Two Security Vulnerabilities
	Slide 3: Spectre and Meltdown
	Slide 4: Terminology
	Slide 5: Timing Side Channel
	Slide 6: Flush and Reload Attack
	Slide 7: Spectre
	Slide 8: Exploiting Branch Prediction
	Slide 9: Exploiting Branch Prediction
	Slide 10: Notes about Spectre
	Slide 11: What addresses are vulnerable?
	Slide 12: What machines are vulnerable?
	Slide 13: OoO Simulation in gem5
	Slide 14: What can be done?
	Slide 15: Meltdown
	Slide 16: Exploit
	Slide 17: What machines are vulnerable?
	Slide 18: What can be done?
	Slide 19: Summary

