CSE 560
Computer Systems Architecture

Spectre / Meltdown

Slides originally developed by Anthony Cabrera (Wash U)

This Unit: Two Security Vulnerabilities

App | | App | | ApPp Side Channel Attacks
System software « What are theyp

/0 « Timing attacks

Two vulnerabilities today:
« Spectre

» Branch prediction
« Meltdown

« EXceptions

=

Spectre and Meltdown

Two distinct forms of vulnerability
« Several variants, we will only discuss main ideas

Both enable illegal accesses of memory
 I.e., reading memory that shouldn’t be accessible

Both target microarchitectural features
« NOT software

Both leverage speculative execution and caches
» Spectre targets branch prediction
» Meltdown targets exception handling

Terminology

What is a side channel attack?

« Function or characteristic of a system that discloses
unintended information

« Measuring the time to complete a sparse matrix-matrix
multiply tells you about the number of non-zeros

« Timing, power consumption, RF emissions, etc. are all
candidate side channels

What is a covert channel attack?
« Altering a system so that it will disclose information

» Installing a keystroke monitor can be used to learn
passwords prior to them being encrypted

« Spectre and Meltdown are both covert channel attacks
These labels are not uniformly used!

Timing Side Channel

Access time

« Want to know if address is cached
» Measure access time with high precision timer
« Uncached values take a long time to access
« Cached values take a short time to access
« Can be side channel (e.g., another core) or covert

500 1
300
200

[cycles]

0 50 100 150 200 250

Possibly cached addresses

Flush and Reload Attack

« Flush address from cache

« Conditionally reload address to cache
« Reload condition is what we want to learn

 Re-access address
« Fast access - address is cached
« Slow access - address is not cached

Spectre

« Exploit the branch predictor in Oo0O pipelines
 Train predictor to take one path

« Switch to other path and access illegal memory
(e.g., via out of bounds array access)

Exploiting Branch Prediction

byte al[N];
int size a = N;
byte b[256];

foo (1nt x) {
1f (x < size a)
y = blalx]];
}
Do this many times (with good x) so branch predicts true
Next, flush b and size a
Then call foo (bad illegal x)
« Resultis bla[bad illegal x]] is loaded into cache
« Even though if test ultimately fails!

Exploiting Branch Prediction

byte al[N];
int size a = N;
byte b[256];

foo (1int x) {
1f (x < size a)
y = blalx]];
}
With size a notin cache, if takes many cycles to resolve

Initially b not cached, but speculative execution puts one
entry of b into cache

« Use timing side channel to determine which entry cached
e That entry is value of a [bad illegal x]!

Notes about Spectre

« What if accessed address is protected?
albad 1llegal x]
might trigger exception!
* Nope, because bad load never commits

« It does trigger cache fill, however, which is the
problem

 Variant is indirect branch exploitation
 Train predictor to make speculative jump to bad code

» Bad code alters microarchitecture state (e.qg., cache)
« Leak information via side channel

What addresses are vulnerable?

 Certainly addresses within same process:
albad 1llegal x]
can be any logical address readable by the process

« But what about other processes?
» Flush and reload must be in process (covert)
« Timing side channel can be another process

« And what about kernel memory?

« eBPF (extended Berkeley packet filter) is code
provided by user application that runs in kernel space

« Static analysis performed, but attack code looks good
wrt array bounds (they are explicitly checked)!

What machines are vulnerable?

« Any microarchitecture that has the following:
« Cache

e Qut of order execution
« Branch prediction

« Manufacturers include
 Intel
« AMD
« Arm
 Others (including gem5 stock OoO model!)

12

Oo00 Simulation in gemb5

f = fetch “." one clock cycle of normal execution

rename
= dispatch
| = Iissue

c = complete

r = retire

O S Q
Il

dispatch “=" instruction is eventually squashed

load size_a

3362400080) 0x004089b6
3362400000) Dx004009b6

3362400000) 0x004009c2

3362400000) 0x004005ce

3362400080) 0x004009d7
3362400000) ©x004089d9

3362400000) 0x004009e7

Credit to Jason Lowe-Power @ UC Davis

load a[Xx]
load b[a[x]]

3362400000) Ox004009ae.
3362400000) 0x004009ae.
3362400000) Ox004009af.
3362400000) ©x004009b2.

3362400000) 0x004069bc.
3362400000) 0x004009be.
3362400000) 0x004009be.
3362400000) 0x004009c2.

3362400000) 0x004009¢2.
3362400000) 0x004009c4.
3362400000) 0x004009c8.
3362400000) 0x004009c8.
3362400000) 6x604609ce.

3362400000) ©x004009d1.
3362400000) 0x004009d1.
3362400000) ©x004009d4.

3362400000) 9xB84009d9.
3362400000) 0xBO4D69ED.
3362400000) 0x064009¢0.
3362400000) 0x004009€0.

3362400000) 0x004009€9.

P EONHAOMOORO OO~ OON O NOOMNDOD M

PUSH_
PUSH_|
MOV_R
MOV_M
MOV_R
MOV_R
MOV_R
CMP_R
CMP_R
IBE_I
JBE_I
JBE_IT

--SAL_R_I
--CDQE_R

R
-MOVZX _B_R
-MOVZX_B_R
-MOVZX _B_R
-MOVZX_B_R
-AND_R_R

if (X < size_a)

R
R

_R
R
2
P

R
i

M

MOVZX_B_

MOV P R

13

https://faculty.engineering.ucdavis.edu/lowepower/

What can be done?

Spectre mitigation is difficult
It represents a whole class of vulnerabilities

Disabling microarchitectural features has substantial
performance impact

* 14% slowdown reported by several groups

Patches available for specific variants

Meltdown

« Exploits features of virtual memory

« Often, all of physical memory is mapped into user space
(and protected from user access) to speed system calls
(user €< - kernel transitions)

« Core idea is to access illegal memory and (like Spectre)
impact the cache state before load is rolled back

Exploit

* Processor attempts a load instruction
« Address is in protected memory

» The instruction issues, which triggers both:
1. Reading address from main memory
2. Checking the privilege bits in the virtual memory

* Privilege check fails, so load never commits
« By the time of the failure, cache can already be updated

« Value is now in cache, proceed to use timing side channel
« Same as Spectre here on out

What machines are vulnerable?

« Any microarchitecture that has the following:
« Cache

« Out of order execution
« Accessible page table concurrent with permission check

« Manufacturers include
 Intel
 Arm
 NOT AMD - check permissions when reading page table

17

What can be done?

Meltdown mitigation is more straightforward

Main memory read happens concurrently with privilege
check (which is a VM function)

But main memory read requires access to page table
« Specifically, a page table entry that is in the kernel!

Solution is to separate user and kernel space page tables
 (Called “kernel page table isolation” or KPTI

 Access to kernel page table from user mode refuses to
provide physical address

* Therefore, it never gets cached

Summary

Both Spectre and Meltdown directly exploit speculative
execution (specifically OoO execution)

Issue a load to an address that is not allowed
» Speculatively execute the load, putting the value in cache
* The load never commits, but the value is already cached

Use a timing side channel attack to read the value in cache

Mitigation is difficult because of large number of variants to
the general vulnerability

« A bit easier for Meltdown via page table isolation

	Slide 1: CSE 560 Computer Systems Architecture
	Slide 2: This Unit: Two Security Vulnerabilities
	Slide 3: Spectre and Meltdown
	Slide 4: Terminology
	Slide 5: Timing Side Channel
	Slide 6: Flush and Reload Attack
	Slide 7: Spectre
	Slide 8: Exploiting Branch Prediction
	Slide 9: Exploiting Branch Prediction
	Slide 10: Notes about Spectre
	Slide 11: What addresses are vulnerable?
	Slide 12: What machines are vulnerable?
	Slide 13: OoO Simulation in gem5
	Slide 14: What can be done?
	Slide 15: Meltdown
	Slide 16: Exploit
	Slide 17: What machines are vulnerable?
	Slide 18: What can be done?
	Slide 19: Summary

