
CSE 560
Computer Systems Architecture

1

Security

Slides originally developed by Justin Deters (Wash U)

This Unit: Security

JumpSwitches for Indirect Branches

Trusted Execution Environment

• ARM

• AMD

• Intel

• RISC-V

2

CPUMem I/O

System software

AppApp App

Hardware Design Choices

• Speculative Execution → Good

• Data Prefetching → Good

• Speculative Execution + Data Prefetching → Bad

• Design choices can interact with unintended consequences

• Need to design hardware with security in mind

3

JumpSwitches Talk
• Retpolines

• Serves as the state-of-the-art defense, effectively disabling
speculative execution for indirect branches

• 20% penalty on some workloads

• JumpSwitches

• Enables speculative execution of indirect branches on safe targets

• Leverages indirect call promotion, transforming indirect calls into
direct calls

• Learn targets at runtime and perform just-in-time promotion
without the overhead of binary translation

• USENIX ATC ’19

• JumpSwitches: Restoring the Performance of Indirect Branches In the
Era of Spectre

• https://www.usenix.org/conference/atc19/presentation/amit

4

https://www.usenix.org/conference/atc19/presentation/amit

Trusted Execution Environment

• Assume that the whole chip is compromised

• Add a Trusted Execution Environment (TEE) to the chip

• Ensure hardware is not vulnerable to known threats

• E.g., in-order execution

• Take measures to diminish chances for software
vulnerabilities

• E.g., keep functionality as low as possible

• Run security sensitive tasks in the TEE

• Encryption/decryption

• Storing secure keys

• Etc.
5

Trusted Execution Environment

● Two OS stacks with separate memory
● Code split into trusted and non-trusted regions
● CPU core switches between secure and non-secure modes
● Strictly limited communication between the worlds

6

TEEs are common in industry

• ARM → TrustZone

• AMD → Platform Security Processor

• Intel → Trusted Execution Technology & SGX
Software Guard Extensions

• RISC-V → Keystone

• Open source!

7

ARM TrustZone

• CPU has a secure mode

• OS cannot see this mode

• Firmware responsible for
changing modes

• Normal World vs. Secure
World

• Software has different view of
hardware in secure world

• Change in security state
propagates over system bus

9

https://genode.org/documentation/articles/trustzone

Example System

• Software must request to
be moved to secure world

• Used hardware
exceptions to initiate
this process

• Firmware is in charge
of preserving software
state between
transitions

10

https://elinux.org/images/0/05/Elc-tfa.pdf

Handles moving software from
Normal to Secure World

Virtual Memory

• Separate virtual addresses
for Normal and Secure
addresses

• Separate physical
addresses for Normal and
Secure memory

• Normal Mode can only
see Normal memory

• Secure Mode can see
both Normal and Secure
memory

11

Normal Virtual
Addresses

Secure Virtual
Addresses

Normal Memory Secure Memory

Caches

• Caches are tagged with
physical addresses

• Only secure
applications can hit a
cache line tagged with
a secure physical
address

12

Tag Data

S:0x8000 Super Secret
Information

N:0x8000 Memes

Secure
Physical

Addresses

Normal
Physical

Addresses

AMD: Platform Security Processor

• Embeds a 32-Bit ARM
microcontroller

• Isolated ROM and SRAM

• Cryptographic Processor

• Two different ISAs on the
same chip!

• Microcontroller manages the
security of the processor.

• Communicates with
processor via interrupts

14

L2

Core Core Core Core

GPUPSP

ARM

x86

RISC-V: Keystone

• TEE for RISC-V

• RISC-V

• Open source ISA

• Community gets to decide what
goes in

• Many chip implementations are also
open source

• Some industry adoption

• Western Digital

• SiFive

• Google → Titan M2 in Pixel 6

• Keystone uses ISA features of RISC-V!

16

RISC-V Physical Memory Protection

• New ISA feature

• Each core has its own set of Physical
Memory Protection (PMP) registers

• Configuration of registers done through
the ISA

• PMP controls User Mode and Supervisor Mode
physical memory access permissions

• PMP is used to create enclaves, which are
secure environments with access to their own
protected memory region, isolated from the
rest of the system

• While in an enclave, if the requested physical
memory address is outside the locked range
→ Denied

• Can also allow for read, write, and
execute granularity of the regions

• Give permission for a contiguous address
range of a certain size

17

PMP0

PMP1

Enclave

Enclave

Physical Address
Range

Setting up Keystone

• PMP registers are statically
prioritized

• 0 → highest priority

• 15 → lowest priority

• Keystone creates a PMP entry for
the Security Manager (SM) at the
highest priority

• Keystone creates a PMP entry for
the whole address range at the
lowest priority

• SM launched for each core in the
system

19

Physical Address
Range

PMP0

PMP15

SM

OS

Creating an Enclave

• OS finds a free contiguous
physical memory range →
Calls the SM

• SM adds PMP entry

• Higher priority than OS
and user processes

• Enclave regions cannot
overlap with each other or
the SM

20

Physical Address
Range

PMP0

PMP15

SM

OS

PMP1

Enclave

Control Transfer

• SM enables the permission
bits for the enclave PMP entry

• SM removes permission for
the OS PMP entry

• Enclaves can only access itself

• Nobody can access the
enclave

21

Physical Address
Range

PMP0

PMP15

SM

OS

PMP1

Enclave

Destruction

• SM disables all permission for
the enclave

• Clears the memory of the
enclave

• Gives memory back to OS

• Re-enables the OS PMP entry

• PMP for the enclave is freed

• If the OS cannot interact, how
is memory managed?

22

Physical Address
Range

PMP0

PMP15

SM

OS

Memory Management

• Keystone manages the virtual memory in the enclave

• Each enclave has its own page table

• Only the enclave knows its own virtual-to-physical
mapping

• The OS only knows what contiguous memory range used

• Does this solve Spectre and Meltdown?

23

Can We Trust the Trusted Execution Environment?

• Who watches the Watchmen?

• Open source software relies on code audits and the
community to find and fix security flaws

• Vast majority of hardware designs are closed source

• Nobody can audit them except for the companies themselves

• Many security flaws make it to market

• Many exploits aren’t discovered for years

• Bad Actors

• Zero-Day exploits are sold by private entities to governments

• Some governments have exploits built into processors

• Perfect security is impossible

• You can only mitigate security risks

25

	Slide 1: CSE 560 Computer Systems Architecture
	Slide 2: This Unit: Security
	Slide 3: Hardware Design Choices
	Slide 4: JumpSwitches Talk
	Slide 5: Trusted Execution Environment
	Slide 6: Trusted Execution Environment
	Slide 7: TEEs are common in industry
	Slide 9: ARM TrustZone
	Slide 10: Example System
	Slide 11: Virtual Memory
	Slide 12: Caches
	Slide 14: AMD: Platform Security Processor
	Slide 16: RISC-V: Keystone
	Slide 17: RISC-V Physical Memory Protection
	Slide 19: Setting up Keystone
	Slide 20: Creating an Enclave
	Slide 21: Control Transfer
	Slide 22: Destruction
	Slide 23: Memory Management
	Slide 25: Can We Trust the Trusted Execution Environment?

