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This Unit: Security

JumpSwitches for Indirect Branches

Trusted Execution Environment

• ARM

• AMD

• Intel

• RISC-V
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Hardware Design Choices

• Speculative Execution → Good

• Data Prefetching → Good

• Speculative Execution + Data Prefetching → Bad

• Design choices can interact with unintended consequences

• Need to design hardware with security in mind
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JumpSwitches Talk
• Retpolines

• Serves as the state-of-the-art defense, effectively disabling 
speculative execution for indirect branches

• 20% penalty on some workloads

• JumpSwitches

• Enables speculative execution of indirect branches on safe targets

• Leverages indirect call promotion, transforming indirect calls into 
direct calls

• Learn targets at runtime and perform just-in-time promotion 
without the overhead of binary translation

• USENIX ATC ’19

• JumpSwitches: Restoring the Performance of Indirect Branches In the 
Era of Spectre

• https://www.usenix.org/conference/atc19/presentation/amit
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Trusted Execution Environment

• Assume that the whole chip is compromised

• Add a Trusted Execution Environment (TEE) to the chip

• Ensure hardware is not vulnerable to known threats

• E.g., in-order execution

• Take measures to diminish chances for software 
vulnerabilities

• E.g., keep functionality as low as possible

• Run security sensitive tasks in the TEE

• Encryption/decryption

• Storing secure keys

• Etc.
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Trusted Execution Environment

● Two OS stacks with separate memory
● Code split into trusted and non-trusted regions
● CPU core switches between secure and non-secure modes
● Strictly limited communication between the worlds
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TEEs are common in industry

• ARM → TrustZone

• AMD → Platform Security Processor

• Intel → Trusted Execution Technology & SGX 
Software Guard Extensions

• RISC-V → Keystone 

• Open source!
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ARM TrustZone

• CPU has a secure mode

• OS cannot see this mode

• Firmware responsible for 
changing modes

• Normal World vs. Secure 
World

• Software has different view of 
hardware in secure world

• Change in security state 
propagates over system bus
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Example System

• Software must request to 
be moved to secure world

• Used hardware 
exceptions to initiate 
this process

• Firmware is in charge 
of preserving software 
state between 
transitions
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https://elinux.org/images/0/05/Elc-tfa.pdf

Handles moving software from 
Normal to Secure World



Virtual Memory

• Separate virtual addresses 
for Normal and Secure 
addresses

• Separate physical 
addresses for Normal and 
Secure memory

• Normal Mode can only 
see Normal memory

• Secure Mode can see 
both Normal and Secure 
memory

11

Normal Virtual 
Addresses

Secure Virtual 
Addresses

Normal Memory Secure Memory



Caches

• Caches are tagged with 
physical addresses

• Only secure 
applications can hit a 
cache line tagged with 
a secure physical 
address
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AMD: Platform Security Processor

• Embeds a 32-Bit ARM 
microcontroller

• Isolated ROM and SRAM

• Cryptographic Processor

• Two different ISAs on the 
same chip!

• Microcontroller manages the 
security of the processor.

• Communicates with 
processor via interrupts
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RISC-V: Keystone

• TEE for RISC-V

• RISC-V

• Open source ISA

• Community gets to decide what 
goes in

• Many chip implementations are also 
open source

• Some industry adoption

• Western Digital

• SiFive

• Google → Titan M2 in Pixel 6

• Keystone uses ISA features of RISC-V!
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RISC-V Physical Memory Protection

• New ISA feature

• Each core has its own set of Physical 
Memory Protection (PMP) registers

• Configuration of registers done through 
the ISA

• PMP controls User Mode and Supervisor Mode 
physical memory access permissions

• PMP is used to create enclaves, which are 
secure environments with access to their own 
protected memory region, isolated from the 
rest of the system

• While in an enclave, if the requested physical 
memory address is outside the locked range 
→ Denied

• Can also allow for read, write, and 
execute granularity of the regions

• Give permission for a contiguous address 
range of a certain size
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Setting up Keystone

• PMP registers are statically 
prioritized

• 0 → highest priority

• 15 → lowest priority

• Keystone creates a PMP entry for 
the Security Manager (SM) at the 
highest priority 

• Keystone creates a PMP entry for 
the whole address range at the 
lowest priority

• SM launched for each core in the 
system
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Creating an Enclave

• OS finds a free contiguous 
physical memory range → 
Calls the SM

• SM adds PMP entry

• Higher priority than OS 
and user processes

• Enclave regions cannot 
overlap with each other or 
the SM
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Control Transfer

• SM enables the permission 
bits for the enclave PMP entry

• SM removes permission for 
the OS PMP entry

• Enclaves can only access itself

• Nobody can access the 
enclave
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Destruction

• SM disables all permission for 
the enclave

• Clears the memory of the 
enclave

• Gives memory back to OS

• Re-enables the OS PMP entry

• PMP for the enclave is freed

• If the OS cannot interact, how 
is memory managed?
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Memory Management

• Keystone manages the virtual memory in the enclave

• Each enclave has its own page table

• Only the enclave knows its own virtual-to-physical 
mapping

• The OS only knows what contiguous memory range used

• Does this solve Spectre and Meltdown?
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Can We Trust the Trusted Execution Environment?

• Who watches the Watchmen?

• Open source software relies on code audits and the 
community to find and fix security flaws

• Vast majority of hardware designs are closed source

• Nobody can audit them except for the companies themselves

• Many security flaws make it to market

• Many exploits aren’t discovered for years

• Bad Actors

• Zero-Day exploits are sold by private entities to governments

• Some governments have exploits built into processors

• Perfect security is impossible

• You can only mitigate security risks
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