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Performance Review

What metric would you use to compare the performance of 
computers 

1. With different ISAs?

2. With the same ISA?

3. With the same ISA and clock speed?

A. MIPS

B. Instructions/Program

C. Execution time

D. IPC

E. Clock speed
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Performance Review

What metric would you use to compare the performance of 
computers 

1. With different ISAs?

2. With the same ISA?

3. With the same ISA and clock speed?

A. MIPS

B. Instructions/Program

C. Execution time (for a program)

D. IPC

E. Clock speed
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This Unit: (Scalar In-Order) Pipelining

• Principles of pipelining

• Effects of overhead and hazards

• Pipeline diagrams

• Data hazards

• Stalling and bypassing

• Control hazards (Next lecture)

• Branch prediction

• Predication
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Datapath Background
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Datapath and Control

• Datapath: implements execute portion of fetch/exec. loop
• Functional units (ALUs), registers, memory interface

• Control: implements decode portion of fetch/execute loop
• Mux selectors, write enable signals regulate flow of data in datapath
• Part of decode involves translating insn opcode into control signals
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Single-Cycle Datapath

Single-cycle datapath: true “atomic” fetch/execute loop
• Fetch, decode, execute one complete instruction every cycle
• “Hardwired control”: opcode to control signals ROM
+ Low CPI: 1 by definition
– Long clock period: to accommodate slowest instruction
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Multi-Cycle Datapath

Multi-cycle datapath: attacks slow clock
• Fetch, decode, execute one complete insn over multiple cycles
• Micro-coded control: “stages” control signals
• Allows insns to take different number of cycles (main point)
± Opposite of single-cycle: short clock period, high CPI (think: CISC)
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Single-cycle vs. Multi-cycle Performance

• Single-cycle
• Clock period = 50ns, CPI = 1
• Performance = 50ns/insn

• Multi-cycle has opposite performance split of single-cycle
+ Shorter clock period
– Higher CPI

• Multi-cycle
• Branch: 20% (3 cycles), load: 20% (5 cycles), ALU: 60% (4 

cycles) 
• Clock period = 11ns, CPI = (20%x3)+(20%x5)+(60%x4) = 4

• Why is clock period 11ns and not 10ns?
• Performance = 44ns/insn

• Aside: CISC makes perfect sense in multi-cycle datapath
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Pipelining Basics
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Latency versus Throughput

• Can we have both low CPI and short clock period?

• Not if datapath executes only one insn at a time

• Latency vs. Throughput

– Latency: no good way to make a single insn go faster

+ Throughput: luckily, single insn latency not so important

• Goal is to make programs, not individual insns, go faster

• Programs contain billions of insns

• Key: exploit inter-insn parallelism
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Pipelining

• Important performance technique

• Improves insn throughput rather instruction latency

• Begin with multi-cycle design

• One insn advances from stage 1 to 2, next insn enters stage 1

• Form of parallelism: “insn-stage parallelism”

• Maintains illusion of sequential fetch/execute loop

• Individual instruction takes the same number of stages

+ But instructions enter and leave at a much faster rate

• Laundry analogy
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Five Stage Pipelined Datapath

• Temporary values (PC,IR,A,B,O,D) re-latched every stage
• Why? 5 insns may be in pipeline at once with different PCs
• Notice, PC not latched after ALU stage (not needed later)
• Pipelined control: one single-cycle controller

• Control signals themselves pipelined
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Five Stage Pipeline Performance

Pipelining: cut datapath into N stages (here five)

• One insn in each stage in each cycle

+ Clock period = MAX(Tinsn-mem, Tregfile, TALU, Tdata-mem)

+ Base CPI = 1: insn enters and leaves every cycle

• Individual insn latency increases (pipeline overhead), ok
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Pipeline Terminology

• Five stage: Fetch, Decode, eXecute, Memory, Writeback

• Latches (pipeline registers) named by stages they separate

• PC, F/D, D/X, X/M, M/W
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More Terminology & Foreshadowing 

• Scalar pipeline: one insn per stage per cycle

• Alternative: “superscalar”, e.g., 4-wide (later)

• In-order pipeline: insns enter execute stage in order

• Alternative: “out-of-order” (OoO) (later)

• Pipeline depth: number of pipeline stages

• Nothing magical about five (Pentium 4 had 22 stages!)

• Trend: deeper until Pentium 4, then pulled back a bit
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Pipeline Example: Cycle 1
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Pipeline Example: Cycle 2
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Pipeline Example: Cycle 3

19

PC I$
Register

File

S

X

s1 s2 d
D$

a

d

+

4

<<

2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

PC

sw $6,4($7) lw $4,0($5) add $3<-$2,$1

F/D D/X X/M M/W



Pipeline Example: Cycle 4
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Pipeline Example: Cycle 5
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Pipeline Example: Cycle 6
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Pipeline Example: Cycle 7
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Pipeline Diagram

Pipeline diagram: shorthand for what we just saw

• Convention: X means lw $4,0($5) finishes execute 

stage and writes into X/M latch at end of cycle 4
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Example Pipeline Perf. Calculation
• Single-cycle

• Clock period = 50ns, CPI = 1
• Performance = 50ns/insn

• Multi-cycle
• Branch: 20% (3 cycles), load: 20% (5 cycles), ALU: 60% (4 cycles) 
• Clock period = 11ns, CPI = (20%x3)+(20%x5)+(60%x4) = 4
• Performance = 44ns/insn

• 5-stage pipelined
• Clock period = 12ns approx. (50ns / 5 stages) + overheads
+ CPI = 1 (each insn takes 5 cycles, but 1 completes each cycle)

+ Performance = 12ns/insn

– Well actually … CPI = 1 + some penalty for pipelining (next)
• CPI = 1.5 (on average insn completes every 1.5 cycles)
• Performance = 18ns/insn
• Much higher performance than single-cycle or multi-cycle
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Clock Period of a Pipelined Processor

Delaydp = time it takes to travel through original datapath

Nps = number of pipeline stages

Pipeline Clock Period > Delaydp / Nps

• Latches add delay

• Extra “bypassing” logic adds delay

• Pipeline stages have different delays, clock period is max delay

• These factors have implications for ideal number pipeline stages

• Diminishing clock frequency gains for longer (deeper) 
pipelines
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CPI Calculation: Accounting for Stalls
Why is Pipelined CPI > 1 ?

• CPI for scalar in-order pipeline is 1 + stall penalties

• Stalls used to resolve hazards

• Hazard: condition that jeopardizes sequential illusion

• Stall: pipeline delay introduced to restore sequential illusion

• Calculating pipeline CPI

• Frequency of stall x stall cycles

• Penalties add (stalls generally don’t overlap in in-order 
pipelines)

• 1 + stall-freq1 x stall-cyc1 + stall-freq2 x stall-cyc2 + …

• Correctness/performance/make common case fast (MCCF)

• Long penalties OK if rare, e.g., 1 + 0.01 x 10 = 1.1

• Stalls have implications for ideal number of pipeline stages
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Data Dependences, Pipeline 
Hazards, and Bypassing
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Dependences and Hazards
• Dependence: relationship between two insns

• Data: two insns use same storage location

• Control: 1 insn affects whether another executes at all

• Not a bad thing, programs would be boring otherwise

• Enforced by making older insn go before younger one

• Happens naturally in single-/multi-cycle designs

• But not in a pipeline

• Hazard: dependence & possibility of wrong insn order

• Effects of wrong insn order cannot be externally visible

• Stall: for order by keeping younger insn in same stage

• Hazards are a bad thing: stalls reduce performance
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Why Does Every Insn Take 5 Cycles?

• Could/should we allow add to skip M and go to W?

– It wouldn’t help: peak fetch still only 1 insn per cycle

– Structural hazards: who gets the register file write port?
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Structural Hazards

• Structural hazards

• Two insns trying to use same circuit at same time

• E.g., structural hazard on register file write port

• To fix structural hazards: proper ISA/pipeline design

• Each insn uses every structure exactly once

• For at most one cycle

• Always at same stage relative to F (fetch)

• Tolerate structure hazards

• Add stall logic to stall pipeline when hazards occur
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Example Structural Hazard

• Structural hazard: resource needed twice in one cycle

• Example: unified instruction & data memories (caches)

• Solutions: 

• Separate instruction/data memories (caches)

• Have cache allow 2 accesses per cycle (slow, expensive)

• Stall pipeline
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1 2 3 4 5 6 7 8 9
ld r2,0(r1) F D X M W
add r1<-r3,r4 F D X M W
sub r1<-r3,r5 F D X M W
st r6,0(r1) F D X M W



Data Hazards

• Would these instructions execute correctly on this pipeline?
• Which instructions execute with correct inputs?

•  add writes result into $3 in current cycle 
–  lw read $3 two cycles ago → got wrong value
–  addi read $3 one cycle ago → got wrong value
•  sw reads $3 this cycle → maybe (depends on register file)
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Memory Data Hazards

• Are memory data hazards a problem for this pipeline? No
•  lw following sw to same address in next cycle, gets right value

•  Why? D$ read/write always take place in same stage
• Data hazards through registers? Yes (previous slide)

•  Occur because register write is three stages after register read
•  Can only read a register value three cycles after writing it
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Observation!

• Technically, we have a problem:
•  lw $4,0($3) has already read $3 from regfile
•  add $3<-$2,$1 hasn’t yet written $3 to regfile

• Fundamentally, this should work
•  lw $4,0($3) hasn’t actually used $3 yet
•  add $3<-$2,$1 has already computed $3
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Reducing Data Hazards: Bypassing

Bypassing
• Reading a value from an intermediate (architectural) source
• Not waiting until it is available from primary source
• Here, we bypass the register file
• Also called forwarding
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WX Bypassing

• What about this combination?

• Add another bypass path and MUX (multiplexor) input

• First one was an MX bypass

• This one is a WX bypass
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ALUinB Bypassing

• Can also bypass to ALU input B
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WM Bypassing?

• Does WM bypassing make sense?

• Not to the address input (why not?)

• But to the store data input, yes
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Bypass Logic

Each MUX has its own logic; here it is for MUX ALUinA
(D/X.IR.RegSource1 == X/M.IR.RegDest) => 0
(D/X.IR.RegSource1 == M/W.IR.RegDest) => 1
Else => 2
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Pipeline Diagrams with Bypassing

• If bypass exists, “from”/“to” stages execute in same cycle

• Example: full bypassing, use MX bypass
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1 2 3 4 5 6 7 8 9 10
add r2,r3➔r1 F D X M W
sub r1,r4➔r2 F D X M W

• Example: full bypassing, use WX bypass 

1 2 3 4 5 6 7 8 9 10
add r2,r3➔r1 F D X M W
ld [r7]➔r5 F D X M W
sub r1,r4➔r2 F D X M W

1 2 3 4 5 6 7 8 9 10
add r2,r3➔r1 F D X M W
? F D X M W

• Example: WM bypass 



Have We Prevented All Data Hazards?

• No.  Consider a “load” followed by a dependent “add” insn

• Bypassing alone isn’t sufficient!

• Hardware solution: detect this situation and inject a stall cycle

• Software solution: ensure compiler doesn’t generate such code
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Stalling to Avoid Data Hazards

• Prevent F/D insn from reading (advancing) this cycle

• Write nop into D/X.IR (effectively, insert nop in hardware)

• Also reset (clear) the datapath control signals 

• Disable F/D latch and PC write enables (why?)

• Re-evaluate situation next cycle
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Stalling on Load-To-Use Dependences

Stall = (D/X.IR.Operation == LOAD) &&

          ((F/D.IR.RegSrc1 == D/X.IR.RegDest) || 

           ((F/D.IR.RegSrc2 == D/X.IR.RegDest) && (F/D.IR.OP != STORE)) 

44

Register

File

S

X

s1 s2 d
D$

a

d

IR

A

B

IR

O

B

IR

O

D

IR

stall

nop

lw $3,4($2)add $4<-$2,$3

F D X M W



Stalling on Load-To-Use Dependences
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Stalling on Load-To-Use Dependences

46

Register

File

S

X

s1 s2 d
D$

a

d

IR

A

B

IR

O

B

IR

O

D

IR

stall

nop

(stall bubble)add $4<-$2,$3 lw $3,…

Stall = (D/X.IR.Operation == LOAD) &&

          ((F/D.IR.RegSrc1 == D/X.IR.RegDest) || 

           ((F/D.IR.RegSrc2 == D/X.IR.RegDest) && (F/D.IR.OP != STORE)) 

F D X M W



Performance Impact of Load/Use Penalty

• Assume

• Branch: 20%, load: 20%, store: 10%, other: 50%

• 50% of loads are followed by dependent instruction

• require 1 cycle stall (i.e., insertion of 1 nop)

• Calculate CPI

• CPI = 1 + (1 x 20% x 50%) = 1.1
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Reducing Load-Use Stall Frequency 

• d* = data hazard

• Use compiler scheduling to reduce load-use stall frequency
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1 2 3 4 5 6 7 8 9

add $3<-$2,$1 F D X M W

lw $4,4($3) F D X M W

addi $6<-$4,1 F d* D X M W

sub $8<-$3,$1 F D X M W

1 2 3 4 5 6 7 8 9

add $3<-$2,$1 F D X M W

lw $4,4($3) F D X M W

sub $8<-$3,$1 F D X M W

addi $6<-$4,1 F D X M W



Pipelining and Multi-Cycle Operations

• What if you wanted to add a multi-cycle operation?
• E.g., 4-cycle multiply
• P/W: separate output latch connects to W stage
• Controlled by pipeline control finite state machine (FSM)
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A Pipelined Multiplier

• Multiplier itself is often pipelined, what does this mean?
• Product/multiplicand register/ALUs/latches replicated
• Can start a new multiply operation every cycle
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Pipeline Diagram with Multiplier

• What about…

• Two instructions trying to write regfile in same cycle?

• Structural hazard!

• Must prevent:
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1 2 3 4 5 6 7 8 9

mul $4<-$3,$5 F D P0 P1 P2 P3 W

addi $6<-$4,1 F d* d* d* D X M W

1 2 3 4 5 6 7 8 9

mul $4<-$3,$5 F D P0 P1 P2 P3 W

addi $6<-$1,1 F D X M W

add $5<-$6,$10 F D X M W



More Multiplier Nasties
• What about…

• Mis-ordered register writes
• SW thinks add gets $4 from addi, actually gets it from mul

• Common? Not for a 4-cycle multiply with 5-stage pipeline
• More common with deeper pipelines
• Frequency irrelevant: must be correct no matter how rare
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1 2 3 4 5 6 7 8 9

mul $4<-$3,$5 F D P0 P1 P2 P3 W

addi $4<-$1,1 F D X M W
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add $10<-$4,$6 F D X M W



Corrected Pipeline Diagram

• With the correct stall logic

• Prevent mis-ordered writes to the same register

• Why two cycles of delay?

Multi-cycle operations complicate pipeline logic
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mul $4<-$3,$5 F D P0 P1 P2 P3 W
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Pipelined Functional Units
• Almost all multi-cycle functional units are pipelined

• Each operation takes N cycles

• Can initiate a new (independent) operation every cycle

• Requires internal latching and some hardware replication

+ Cheaper than multiple (non-pipelined) units
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1 2 3 4 5 6 7 8 9 10 11
mulf f0 f1,f2 F D E1 E2 E3 E4 W
mulf f3 f4,f5 F D E1 E2 E3 E4 W

1 2 3 4 5 6 7 8 9 10 11
divf f0 f1,f2 F D E/ E/ E/ E/ W
divf f3 f4,f5 F s* s* s* D E/ E/ E/ E/ W

• Exception: int/FP divide: difficult to pipeline; not worth it

s* = structural hazard, two insns need same structure

• ISAs and pipelines designed minimize these

• Canonical example: all insns go through M stage
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