
CSE 560
Computer Systems Architecture

Pipelining

Performance Review

What metric would you use to compare the performance of
computers

1. With different ISAs?

2. With the same ISA?

3. With the same ISA and clock speed?

A. MIPS

B. Instructions/Program

C. Execution time

D. IPC

E. Clock speed

2

Performance Review

What metric would you use to compare the performance of
computers

1. With different ISAs?

2. With the same ISA?

3. With the same ISA and clock speed?

A. MIPS

B. Instructions/Program

C. Execution time (for a program)

D. IPC

E. Clock speed

3

Execution time

MIPS

IPC

= x xseconds instructions cycles seconds
 program program instruction cycle

This Unit: (Scalar In-Order) Pipelining

• Principles of pipelining

• Effects of overhead and hazards

• Pipeline diagrams

• Data hazards

• Stalling and bypassing

• Control hazards (Next lecture)

• Branch prediction

• Predication

4

CPUMem I/O

System software

AppApp App

Datapath Background

5

Datapath and Control

• Datapath: implements execute portion of fetch/exec. loop
• Functional units (ALUs), registers, memory interface

• Control: implements decode portion of fetch/execute loop
• Mux selectors, write enable signals regulate flow of data in datapath
• Part of decode involves translating insn opcode into control signals

6

PC I$
Register

File

s1 s2 d
D$

+

4

control

Disclaimer:
RISC datapath

ALU

Single-Cycle Datapath

Single-cycle datapath: true “atomic” fetch/execute loop
• Fetch, decode, execute one complete instruction every cycle
• “Hardwired control”: opcode to control signals ROM
+ Low CPI: 1 by definition
– Long clock period: to accommodate slowest instruction

7

PC I$
Register

File

s1 s2 d
D$

+

4

Multi-Cycle Datapath

Multi-cycle datapath: attacks slow clock
• Fetch, decode, execute one complete insn over multiple cycles
• Micro-coded control: “stages” control signals
• Allows insns to take different number of cycles (main point)
± Opposite of single-cycle: short clock period, high CPI (think: CISC)

8

PC I$
Register

File

s1 s2 d
D$

+

4

DO
B

A

Single-cycle vs. Multi-cycle Performance

• Single-cycle
• Clock period = 50ns, CPI = 1
• Performance = 50ns/insn

• Multi-cycle has opposite performance split of single-cycle
+ Shorter clock period
– Higher CPI

• Multi-cycle
• Branch: 20% (3 cycles), load: 20% (5 cycles), ALU: 60% (4

cycles)
• Clock period = 11ns, CPI = (20%x3)+(20%x5)+(60%x4) = 4

• Why is clock period 11ns and not 10ns?
• Performance = 44ns/insn

• Aside: CISC makes perfect sense in multi-cycle datapath

9

Pipelining Basics

10

Latency versus Throughput

• Can we have both low CPI and short clock period?

• Not if datapath executes only one insn at a time

• Latency vs. Throughput

– Latency: no good way to make a single insn go faster

+ Throughput: luckily, single insn latency not so important

• Goal is to make programs, not individual insns, go faster

• Programs contain billions of insns

• Key: exploit inter-insn parallelism

11

insn0.fetch, dec, exec

Single-cycle

Multi-cycle

insn1.fetch, dec, exec

insn0.decinsn0.fetch

insn1.decinsn1.fetch

insn0.exec

insn1.exec

Pipelining

• Important performance technique

• Improves insn throughput rather instruction latency

• Begin with multi-cycle design

• One insn advances from stage 1 to 2, next insn enters stage 1

• Form of parallelism: “insn-stage parallelism”

• Maintains illusion of sequential fetch/execute loop

• Individual instruction takes the same number of stages

+ But instructions enter and leave at a much faster rate

• Laundry analogy

12

insn0.decinsn0.fetch

insn1.decinsn1.fetchMulti-cycle

Pipelined

insn0.exec

insn1.exec

insn0.decinsn0.fetch

insn1.decinsn1.fetch

insn0.exec

insn1.exec

Five Stage Pipelined Datapath

• Temporary values (PC,IR,A,B,O,D) re-latched every stage
• Why? 5 insns may be in pipeline at once with different PCs
• Notice, PC not latched after ALU stage (not needed later)
• Pipelined control: one single-cycle controller

• Control signals themselves pipelined

13

PC I$
Register

File

s1 s2 d
D$

+

4

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

Five Stage Pipeline Performance

Pipelining: cut datapath into N stages (here five)

• One insn in each stage in each cycle

+ Clock period = MAX(Tinsn-mem, Tregfile, TALU, Tdata-mem)

+ Base CPI = 1: insn enters and leaves every cycle

• Individual insn latency increases (pipeline overhead), ok

14

PC I$

Register

File
s1 s2 d D$

+

4

Tinsn-mem Tregfile TALU Tdata-mem Tregfile

Tsinglecycle

Pipeline Terminology

• Five stage: Fetch, Decode, eXecute, Memory, Writeback

• Latches (pipeline registers) named by stages they separate

• PC, F/D, D/X, X/M, M/W

15

PC I$
Register

File

s1 s2 d
D$

+

4

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR
PC

F/D D/X X/M M/W

More Terminology & Foreshadowing

• Scalar pipeline: one insn per stage per cycle

• Alternative: “superscalar”, e.g., 4-wide (later)

• In-order pipeline: insns enter execute stage in order

• Alternative: “out-of-order” (OoO) (later)

• Pipeline depth: number of pipeline stages

• Nothing magical about five (Pentium 4 had 22 stages!)

• Trend: deeper until Pentium 4, then pulled back a bit

16

Pipeline Example: Cycle 1

17

PC I$
Register

File

S

X

s1 s2 d
D$

a

d

+

4

<<

2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

PC

F/D D/X X/M M/W

add $3<-$2,$1

Pipeline Example: Cycle 2

18

PC I$
Register

File

S

X

s1 s2 d
D$

a

d

+

4

<<

2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

PC

lw $4,0($5) add $3<-$2,$1

F/D D/X X/M M/W

Pipeline Example: Cycle 3

19

PC I$
Register

File

S

X

s1 s2 d
D$

a

d

+

4

<<

2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

PC

sw $6,4($7) lw $4,0($5) add $3<-$2,$1

F/D D/X X/M M/W

Pipeline Example: Cycle 4

20

PC I$
Register

File

S

X

s1 s2 d
D$

a

d

+

4

<<

2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

PC

sw $6,4($7) lw $4,0($5) add $3<-$2,$1

F/D D/X X/M M/W

Pipeline Example: Cycle 5

21

PC I$
Register

File

S

X

s1 s2 d
D$

a

d

+

4

<<

2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

PC

sw $6,4($7) lw $4,0($5) add

F/D D/X X/M M/W

Pipeline Example: Cycle 6

22

PC I$
Register

File

S

X

s1 s2 d
D$

a

d

+

4

<<

2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

PC

sw $6,4(7) lw

F/D D/X X/M M/W

Pipeline Example: Cycle 7

23

PC I$
Register

File

S

X

s1 s2 d
D$

a

d

+

4

<<

2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

PC

sw

F/D D/X X/M M/W

Pipeline Diagram

Pipeline diagram: shorthand for what we just saw

• Convention: X means lw $4,0($5) finishes execute

stage and writes into X/M latch at end of cycle 4

24

1 2 3 4 5 6 7 8 9

add $3<-$2,$1 F D X M W

lw $4,0($5) F D X M W

sw $6,4($7) F D X M W

Cycles →

In
st

ru
ct

io
n
s

Example Pipeline Perf. Calculation
• Single-cycle

• Clock period = 50ns, CPI = 1
• Performance = 50ns/insn

• Multi-cycle
• Branch: 20% (3 cycles), load: 20% (5 cycles), ALU: 60% (4 cycles)
• Clock period = 11ns, CPI = (20%x3)+(20%x5)+(60%x4) = 4
• Performance = 44ns/insn

• 5-stage pipelined
• Clock period = 12ns approx. (50ns / 5 stages) + overheads
+ CPI = 1 (each insn takes 5 cycles, but 1 completes each cycle)

+ Performance = 12ns/insn

– Well actually … CPI = 1 + some penalty for pipelining (next)
• CPI = 1.5 (on average insn completes every 1.5 cycles)
• Performance = 18ns/insn
• Much higher performance than single-cycle or multi-cycle

25

Clock Period of a Pipelined Processor

Delaydp = time it takes to travel through original datapath

Nps = number of pipeline stages

Pipeline Clock Period > Delaydp / Nps

• Latches add delay

• Extra “bypassing” logic adds delay

• Pipeline stages have different delays, clock period is max delay

• These factors have implications for ideal number pipeline stages

• Diminishing clock frequency gains for longer (deeper)
pipelines

26

CPI Calculation: Accounting for Stalls
Why is Pipelined CPI > 1 ?

• CPI for scalar in-order pipeline is 1 + stall penalties

• Stalls used to resolve hazards

• Hazard: condition that jeopardizes sequential illusion

• Stall: pipeline delay introduced to restore sequential illusion

• Calculating pipeline CPI

• Frequency of stall x stall cycles

• Penalties add (stalls generally don’t overlap in in-order
pipelines)

• 1 + stall-freq1 x stall-cyc1 + stall-freq2 x stall-cyc2 + …

• Correctness/performance/make common case fast (MCCF)

• Long penalties OK if rare, e.g., 1 + 0.01 x 10 = 1.1

• Stalls have implications for ideal number of pipeline stages

27

Data Dependences, Pipeline
Hazards, and Bypassing

28

Dependences and Hazards
• Dependence: relationship between two insns

• Data: two insns use same storage location

• Control: 1 insn affects whether another executes at all

• Not a bad thing, programs would be boring otherwise

• Enforced by making older insn go before younger one

• Happens naturally in single-/multi-cycle designs

• But not in a pipeline

• Hazard: dependence & possibility of wrong insn order

• Effects of wrong insn order cannot be externally visible

• Stall: for order by keeping younger insn in same stage

• Hazards are a bad thing: stalls reduce performance

29

Why Does Every Insn Take 5 Cycles?

• Could/should we allow add to skip M and go to W?

– It wouldn’t help: peak fetch still only 1 insn per cycle

– Structural hazards: who gets the register file write port?

30

PC I$
Register

File

S

X

s1 s2 d
D$

a

d

+

4

<<

2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

PC

F D X M

add $3<-$2,$1 lw $4,0($5)

W

Structural Hazards

• Structural hazards

• Two insns trying to use same circuit at same time

• E.g., structural hazard on register file write port

• To fix structural hazards: proper ISA/pipeline design

• Each insn uses every structure exactly once

• For at most one cycle

• Always at same stage relative to F (fetch)

• Tolerate structure hazards

• Add stall logic to stall pipeline when hazards occur

31

Example Structural Hazard

• Structural hazard: resource needed twice in one cycle

• Example: unified instruction & data memories (caches)

• Solutions:

• Separate instruction/data memories (caches)

• Have cache allow 2 accesses per cycle (slow, expensive)

• Stall pipeline

32

1 2 3 4 5 6 7 8 9
ld r2,0(r1) F D X M W
add r1<-r3,r4 F D X M W
sub r1<-r3,r5 F D X M W
st r6,0(r1) F D X M W

Data Hazards

• Would these instructions execute correctly on this pipeline?
• Which instructions execute with correct inputs?

• add writes result into $3 in current cycle
– lw read $3 two cycles ago → got wrong value
– addi read $3 one cycle ago → got wrong value
• sw reads $3 this cycle → maybe (depends on register file)

33

add $3<-$2,$1lw $4,0($3)sw $3,0($7) addi $6<-1,$3

Register

File

S

X

s1 s2 d

IR

A

B

IR

O

B

IR

D$

a

d

O

D

IRF D X M W

Memory Data Hazards

• Are memory data hazards a problem for this pipeline? No
• lw following sw to same address in next cycle, gets right value

• Why? D$ read/write always take place in same stage
• Data hazards through registers? Yes (previous slide)

• Occur because register write is three stages after register read
• Can only read a register value three cycles after writing it

34

sw $5,0($1)lw $4,0($1)

Register

File

S

X

s1 s2 d

IR

A

B

IR

O

B

IR

D$

a

d

O

D

IRF D X M W

Observation!

• Technically, we have a problem:
• lw $4,0($3) has already read $3 from regfile
• add $3<-$2,$1 hasn’t yet written $3 to regfile

• Fundamentally, this should work
• lw $4,0($3) hasn’t actually used $3 yet
• add $3<-$2,$1 has already computed $3

35

Register

File

S

X

s1 s2 d

IR

A

B

IR

O

B

IR

add $3<-$2,$1lw $4,0($3)

D$

a

d

O

D

IRF D X M W

Reducing Data Hazards: Bypassing

Bypassing
• Reading a value from an intermediate (architectural) source
• Not waiting until it is available from primary source
• Here, we bypass the register file
• Also called forwarding

36

Register

File

S

X

s1 s2 d

IR

A

B

IR

O

B

IR

add $3<-$2,$1lw $4,0($3)

D$

a

d

O

D

IR
F D X M W

WX Bypassing

• What about this combination?

• Add another bypass path and MUX (multiplexor) input

• First one was an MX bypass

• This one is a WX bypass

37

Register

File

S

X

s1 s2 d

IR

A

B

IR

O

B

IR

add $3<-$2,$1lw $4,0($3)

D$

a

d

O

D

IR
F D X M W

ALUinB Bypassing

• Can also bypass to ALU input B

38

Register

File

S

X

s1 s2 d

IR

A

B

IR

O

B

IR

add $3<-$2,$1add $4<-$2,$3

D$

a

d

O

D

IR
F D X M W

WM Bypassing?

• Does WM bypassing make sense?

• Not to the address input (why not?)

• But to the store data input, yes

39

Register

File

S

X

s1 s2 d
D$

a

d

IR

A

B

IR

O

B

IR

O

D

IR

lw $3,0($2)sw $3,0($4)

F D X M W

Bypass Logic

Each MUX has its own logic; here it is for MUX ALUinA
(D/X.IR.RegSource1 == X/M.IR.RegDest) => 0
(D/X.IR.RegSource1 == M/W.IR.RegDest) => 1
Else => 2

40

Register

File

S

X

s1 s2 d

IR

A

B

IR

O

B

IR

D$

a

d

O

D

IR

bypass

F D X M W

Pipeline Diagrams with Bypassing

• If bypass exists, “from”/“to” stages execute in same cycle

• Example: full bypassing, use MX bypass

41

1 2 3 4 5 6 7 8 9 10
add r2,r3➔r1 F D X M W
sub r1,r4➔r2 F D X M W

• Example: full bypassing, use WX bypass

1 2 3 4 5 6 7 8 9 10
add r2,r3➔r1 F D X M W
ld [r7]➔r5 F D X M W
sub r1,r4➔r2 F D X M W

1 2 3 4 5 6 7 8 9 10
add r2,r3➔r1 F D X M W
? F D X M W

• Example: WM bypass

Have We Prevented All Data Hazards?

• No. Consider a “load” followed by a dependent “add” insn

• Bypassing alone isn’t sufficient!

• Hardware solution: detect this situation and inject a stall cycle

• Software solution: ensure compiler doesn’t generate such code

42

Register

File

S

X

s1 s2 d
D$

a

d

IR

A

B

IR

O

B

IR

O

D

IR

lw $3,4($2)stall

nop

add $4<-$2,$3

F D X M W

Stalling to Avoid Data Hazards

• Prevent F/D insn from reading (advancing) this cycle

• Write nop into D/X.IR (effectively, insert nop in hardware)

• Also reset (clear) the datapath control signals

• Disable F/D latch and PC write enables (why?)

• Re-evaluate situation next cycle

43

Register

File

S

X

s1 s2 d

IR

A

B

IR

O

B

IR

hazard

nop

D$

a

d

O

D

IR
F D X M W

Stalling on Load-To-Use Dependences

Stall = (D/X.IR.Operation == LOAD) &&

 ((F/D.IR.RegSrc1 == D/X.IR.RegDest) ||

 ((F/D.IR.RegSrc2 == D/X.IR.RegDest) && (F/D.IR.OP != STORE))

44

Register

File

S

X

s1 s2 d
D$

a

d

IR

A

B

IR

O

B

IR

O

D

IR

stall

nop

lw $3,4($2)add $4<-$2,$3

F D X M W

Stalling on Load-To-Use Dependences

45

Register

File

S

X

s1 s2 d
D$

a

d

IR

A

B

IR

O

B

IR

O

D

IR

stall

nop

(stall bubble)add $4<-$2,$3 lw $3,4($2)

Stall = (D/X.IR.Operation == LOAD) &&

 ((F/D.IR.RegSrc1 == D/X.IR.RegDest) ||

 ((F/D.IR.RegSrc2 == D/X.IR.RegDest) && (F/D.IR.OP != STORE)))

F D X M W

Stalling on Load-To-Use Dependences

46

Register

File

S

X

s1 s2 d
D$

a

d

IR

A

B

IR

O

B

IR

O

D

IR

stall

nop

(stall bubble)add $4<-$2,$3 lw $3,…

Stall = (D/X.IR.Operation == LOAD) &&

 ((F/D.IR.RegSrc1 == D/X.IR.RegDest) ||

 ((F/D.IR.RegSrc2 == D/X.IR.RegDest) && (F/D.IR.OP != STORE))

F D X M W

Performance Impact of Load/Use Penalty

• Assume

• Branch: 20%, load: 20%, store: 10%, other: 50%

• 50% of loads are followed by dependent instruction

• require 1 cycle stall (i.e., insertion of 1 nop)

• Calculate CPI

• CPI = 1 + (1 x 20% x 50%) = 1.1

47

Reducing Load-Use Stall Frequency

• d* = data hazard

• Use compiler scheduling to reduce load-use stall frequency

48

1 2 3 4 5 6 7 8 9

add $3<-$2,$1 F D X M W

lw $4,4($3) F D X M W

addi $6<-$4,1 F d* D X M W

sub $8<-$3,$1 F D X M W

1 2 3 4 5 6 7 8 9

add $3<-$2,$1 F D X M W

lw $4,4($3) F D X M W

sub $8<-$3,$1 F D X M W

addi $6<-$4,1 F D X M W

Pipelining and Multi-Cycle Operations

• What if you wanted to add a multi-cycle operation?
• E.g., 4-cycle multiply
• P/W: separate output latch connects to W stage
• Controlled by pipeline control finite state machine (FSM)

49

Register

File

s1 s2 d

IR

A

B

IR

O

B

IR

D$

a

d

O

D

IR

P

IR

X

P/W

Xctrl

F D X M W

A Pipelined Multiplier

• Multiplier itself is often pipelined, what does this mean?
• Product/multiplicand register/ALUs/latches replicated
• Can start a new multiply operation every cycle

50

Register

File

s1 s2 d

IR

A

B

IR

O

B

IR

D$

a

d

O

D

IR

P

M

IR

P0/P1

P

M

IR

P1/P2

P

M

IR

P

M

IR

P2/P3 P3/W

F D X M W

Pipeline Diagram with Multiplier

• What about…

• Two instructions trying to write regfile in same cycle?

• Structural hazard!

• Must prevent:

51

1 2 3 4 5 6 7 8 9

mul $4<-$3,$5 F D P0 P1 P2 P3 W

addi $6<-$4,1 F d* d* d* D X M W

1 2 3 4 5 6 7 8 9

mul $4<-$3,$5 F D P0 P1 P2 P3 W

addi $6<-$1,1 F D X M W

add $5<-$6,$10 F D X M W

More Multiplier Nasties
• What about…

• Mis-ordered register writes
• SW thinks add gets $4 from addi, actually gets it from mul

• Common? Not for a 4-cycle multiply with 5-stage pipeline
• More common with deeper pipelines
• Frequency irrelevant: must be correct no matter how rare

52

1 2 3 4 5 6 7 8 9

mul $4<-$3,$5 F D P0 P1 P2 P3 W

addi $4<-$1,1 F D X M W

…

…

add $10<-$4,$6 F D X M W

Corrected Pipeline Diagram

• With the correct stall logic

• Prevent mis-ordered writes to the same register

• Why two cycles of delay?

Multi-cycle operations complicate pipeline logic

53

1 2 3 4 5 6 7 8 9

mul $4<-$3,$5 F D P0 P1 P2 P3 W

addi $4<-$1,1 F d* d* D X M W

…

…

add $10<-$4,$6 F D X M W

Pipelined Functional Units
• Almost all multi-cycle functional units are pipelined

• Each operation takes N cycles

• Can initiate a new (independent) operation every cycle

• Requires internal latching and some hardware replication

+ Cheaper than multiple (non-pipelined) units

54

1 2 3 4 5 6 7 8 9 10 11
mulf f0 f1,f2 F D E1 E2 E3 E4 W
mulf f3 f4,f5 F D E1 E2 E3 E4 W

1 2 3 4 5 6 7 8 9 10 11
divf f0 f1,f2 F D E/ E/ E/ E/ W
divf f3 f4,f5 F s* s* s* D E/ E/ E/ E/ W

• Exception: int/FP divide: difficult to pipeline; not worth it

s* = structural hazard, two insns need same structure

• ISAs and pipelines designed minimize these

• Canonical example: all insns go through M stage

	Slide 1: CSE 560 Computer Systems Architecture
	Slide 2: Performance Review
	Slide 3: Performance Review
	Slide 4: This Unit: (Scalar In-Order) Pipelining
	Slide 5: Datapath Background
	Slide 6: Datapath and Control
	Slide 7: Single-Cycle Datapath
	Slide 8: Multi-Cycle Datapath
	Slide 9: Single-cycle vs. Multi-cycle Performance
	Slide 10: Pipelining Basics
	Slide 11: Latency versus Throughput
	Slide 12: Pipelining
	Slide 13: Five Stage Pipelined Datapath
	Slide 14: Five Stage Pipeline Performance
	Slide 15: Pipeline Terminology
	Slide 16: More Terminology & Foreshadowing
	Slide 17: Pipeline Example: Cycle 1
	Slide 18: Pipeline Example: Cycle 2
	Slide 19: Pipeline Example: Cycle 3
	Slide 20: Pipeline Example: Cycle 4
	Slide 21: Pipeline Example: Cycle 5
	Slide 22: Pipeline Example: Cycle 6
	Slide 23: Pipeline Example: Cycle 7
	Slide 24: Pipeline Diagram
	Slide 25: Example Pipeline Perf. Calculation
	Slide 26: Clock Period of a Pipelined Processor
	Slide 27: CPI Calculation: Accounting for Stalls
	Slide 28: Data Dependences, Pipeline Hazards, and Bypassing
	Slide 29: Dependences and Hazards
	Slide 30: Why Does Every Insn Take 5 Cycles?
	Slide 31: Structural Hazards
	Slide 32: Example Structural Hazard
	Slide 33: Data Hazards
	Slide 34: Memory Data Hazards
	Slide 35: Observation!
	Slide 36: Reducing Data Hazards: Bypassing
	Slide 37: WX Bypassing
	Slide 38: ALUinB Bypassing
	Slide 39: WM Bypassing?
	Slide 40: Bypass Logic
	Slide 41: Pipeline Diagrams with Bypassing
	Slide 42: Have We Prevented All Data Hazards?
	Slide 43: Stalling to Avoid Data Hazards
	Slide 44: Stalling on Load-To-Use Dependences
	Slide 45: Stalling on Load-To-Use Dependences
	Slide 46: Stalling on Load-To-Use Dependences
	Slide 47: Performance Impact of Load/Use Penalty
	Slide 48: Reducing Load-Use Stall Frequency
	Slide 49: Pipelining and Multi-Cycle Operations
	Slide 50: A Pipelined Multiplier
	Slide 51: Pipeline Diagram with Multiplier
	Slide 52: More Multiplier Nasties
	Slide 53: Corrected Pipeline Diagram
	Slide 54: Pipelined Functional Units

