CSE 560
Computer Systems Architecture

Performance Modeling

Computer Architecture Simulator Primer

Q: What is an architectural simulator?
A: tool that reproduces the behavior of a computing device

System Inputs — | Device — System Outputs

Simulator :
—— System Metrics

Why use a simulator?

 leverage faster, more flexible S/W development cycle
« permits more design space exploration

 facilitates validation before H/W becomes available
 level of abstraction can be throttled to design task

« can tell us quite a bit about performance

Functional vs. Behavioral Simulators

Functional Simulators

« Implement instruction set architecture (what programmers see)
- Execute each instruction
» Takes real inputs, creates real outputs

Behavioral simulators (also called Performance Simulators)
« Implement the microarchitecture (system internals)

« 5 stage pipeline

« Branch prediction

« Caches
« Go through the internal motions to estimate time (usually)
« Might not actually execute the program

The Zen of Simulator Design

Performance Performance: speeds design cycle
Flexibility: maximizes design scope
Detail: minimizes risk
Detail = ? Flexibility

» Design goals will drive which aspects are optimized
 Previous versions of this class have used:
« SimpleScalar: optimizes performance and flexibility
« VHDL: optimizes detail
« We will use gemb5 in this class
 Cycle accurate chip multiprocessor
« Used /ots of places!

Simulation Loop

sim_time € initial time
while (not done) {

for each register r {
new_r < new value of r based on current register values

y
for each register r {
r €< new_r

¥

sim_time € sim_time + 1 clock

Latency versus Throughput

insn0.fetch, dec, exec
Single-cycle insnl.fetch, dec, exec

iInsn0.fetch] insn0.dec | insn0.exec
Multi-cycle insnl.fetch] insnl.dec |insnl.exec

« Can we have both low CPI and short clock period?
« Not if datapath executes only one insn at a time
« Latency vs. Throughput
— Latency: no good way to make a single insn go faster

+ Throughput: luckily, single insn latency not so important
« Goal is to make programs, not individual insns, go faster
« Programs contain billions of insns

« Key: exploit inter-insn parallelism

Pipelining

iInsnO.fetch

iInsn0.dec

insn0.exec

Multi-cycle

iInsnl.fetch

insnl.dec

iInsnl.exec

iInsnO.fetch

iInsn0.dec

insn0.exec

insnl.fetch

insnl.dec

insnl.exec

Pipelined

« Important performance technique
- Improves insn throughput rather instruction latency
« Begin with multi-cycle design
« One insn advances from stage 1 to 2, next insn enters stage 1
« Form of parallelism: “insn-stage parallelism”
« Maintains illusion of sequential fetch/execute loop
 Individual instruction takes the same number of stages
+ But instructions enter and leave at a much faster rate
« Laundry analogy

Five Stage Pipelined Datapath

Register
File
P> s1s2 d

A

« Temporary values (PC,IR,A,B,O,D) re-latched every stage
« Why? 5 insns may be in pipeline at once with different PCs
« Notice, PC not latched after ALU stage (not needed later)

- Pipelined control: one single-cycle controller
« Control signals themselves pipelined

Pipeline Terminology

Register
File

P> s1s2 d

e

A

PC

F/D D/X XIM M/W

 Five stage: Fetch, Decode, eXecute, Memory, Writeback
 Latches (pipeline registers) named by stages they separate
- PC, F/D, D/X, X/M, M/W
« d_x.a = reg_file[f_d.ir<25:21>]
« d_x.b = reg_file[f_d.ir<20:16>]

Pipeline Example: Cycle 1

(l—

< RS

File

> s1s2 d

T

Register

A

F/ID
add $3<-$2,851

XIM

M/W

10

Pipeline Example: Cycle 2

(l—

Register
File
P> s1s2 d

‘|‘ 1

F/ID D/X XIM M/W
lw $4,0($5) add $3<-$2,51

11

Pipeline Example: Cycle 3

(l—

F/ID D/X XIM
sw $6,4($7) lw $4,0($5) add $3<-$2,851

M/W

12

Pipeline Example: Cycle 4

(l—

Register
File
P> s1s2 d

‘|‘ 4}

F/ID D/X XIM M/W
sw $6,4($87) 1w $4,0($5) add $3<-$2,51

Pipeline Example: Cycle 5

(l—

File

> s1s2 d

T

Register

A

F/ID

D/X

sw $6,4(57)

XIM M/W
lw $4,0($5)

add

14

Pipeline Example: Cycle 6

(l—

F/ID

XIM M/W
sw $6,4(7)

1w

15

Pipeline Example: Cycle 7

(l—

< RS

File

> s1s2 d

T

Register

A

F/ID

XIM

M/W

SW

16

Five Stage Pipeline Performance

|55 s

. N
*| Register } .
File R
1% > s1s2 d 'l/ D$
A “ >
S /
Tinsn-mem Tregfile TALU Tdata—mem Tregfile

Pipelining: cut datapath into N stages (here five) Tsingiecycie
* One insn in each stage in each cycle
+ Clock periOd = IVIAX(Tinsn—meml Tregfilel TALUI Tdata-mem)
+ Base CPI = 1: insn enters and leaves every cycle
+ Simulation models cases that make CPI > 1
 Individual insn latency increases (pipeline overhead), ok

Parallel vs. Sequential — start here

Hardware is parallel, simulation software is (typically) not.
« 5 stage pipeline vs. our simulate() method
« Can’t execute 5 stages in parallel, so...
traverse the pipeline backwards
« HW table = software array
dm_cache[index].data, dm_cache[index].tag

« Anything more complicated? Serial approximation of
parallel structure

« Accessing all 4 ways in a set at once? Nope.
« CAM lookup (find all entries with value X). Nope.
 Flush entire instruction window? Nope.

« Simulator is slower b/c it's in software and its serial

Simulator Types

« Software Simulators
« Processor Core Simulators
« Cache Simulators
 Full-system Simulators

« Hardware Simulators (VHDL, Verilog, etc.)

* You instantiate every wire
3 Register read ports in SW vs. HW

Less flexible

More complex (and complete) model of real system
Slower to develop

Can use FPGAs for emulation (huge benefit for speed!)

Execution vs. Trace-Driven Simulation

What is the input to the simulator?

Trace-based Simulator (input = dynamic insns)

« Reads “trace” of insns captured from a previous execution
 Easiest to implement, no functional component needed

Execution-driven Simulator (input = static insns)

« simulator “runs” the program, generating a trace on-the-fly
« more difficult to implement, but has many advantages
 direct-execution: instrumented program runs on host

20

gem5 Simulator Heritage

M5 GEMS

Processor Memory
Models Models

Authored in C++
and Python

21

Simulator Options

Configuration File:

« Configure the system being modeled (e.g., ISA,
size of cache line, in order vs. out of order execution)

« Specify the binary executable to simulate
 Control the simulation (start, stop, etc.)
o Literally is a Python file

« Anything available in Python is available here
« Python interpreter included in simulator!

Simulator Output

Three output files:
« config.ini and config.json

* Lists every SimObject created and its parameters
« Indicates "what did I actually simulate?”

« Results of simulation in stats.txt file
« Dump of pretty much everything collected during simulation

e Command line option:
« —-d DIR Specify directory for output files

« Overwrites output files if present

Sample Output

system.cpu.apic_clk domain.clock 16668 # Clock period in ticks
system.cpu.workload. num syscalls 11 # Number of system calls
system.cpu.numCycles 345518 # number of cpu cycles simulated
system.cpu.numiWorkItemsStarted 8 # number of work items this cpu start
system.cpu.numWorkItemsCompleted 8 # number of work items this cpu compl
system.cpu.committedInsts 5712 # Number of instructions committed
system.cpu.committedOps 18314 # Number of ops (including micro ops)
system.cpu.num_int alu accesses la2@5 # Number of integer alu accesses
system.cpu.num_fp alu_accesses 8 # Number of float alu accesses
system.cpu.num_func_ calls 221 # number of times g function caoll or
system.cpu.num_conditional control insts 9386 # number of instructions that are cor
system.cpu.num_int_insts 18285 # number of integer instructions
system.cpu.num_fp insts 8 # number of fleoat instructions
system.cpu.num_int_register_reads 19296 # number of times the integer registe
system.cpu.num_int register writes FAEFF # number of times the integer registe
system.cpu.num_fp register reads a8 # number of times the floating regist
system.cpu.num_fp_register_writes 8 # number of times the fleoating regist
system.cpu.num_cc_register reads 7e2e # number of times the CC registers we
system.cpu.num_cc_register_writes 3825 # number of times the CC registers we
system.cpu.num_mem_refs 2825 # number of memory refs
system.cpu.num_load insts les4 # Number of lood instructions
system.cpu.num_store_insts 941 # Number of store instructions
system.cpu.num_idle cycles G . L BEE # Number of idle cycles
system.cpu.num_busy cycles 345517.999660 # Number of busy cycles
system.cpu.not_idle fraction 1. 820 BEE # Percentage of non-idle cycles
system.cpu.idle fraction @ . B BEE # Percentage of idle cycles
system.cpu.Branches 1386 # Number of branches fetched

' 1 | b

But where is CPI?

CPI is not one of the statistics that is provided directly in
the stats.txt file

What if we want to know CPI?

Definition of CPI is average cycles/instruction

- Simulator tells us cycles — sim ticks (almost! wrong
units, however; also need clock period)

- Simulator tells us dynamic instructions — sim insts
(don’t confuse this with micro-operations, sim ops)

* Divide
 In effect, we are using perf. egn. to solve for CPI

Simulation tick time is 1 picosecond

Simulation and Performance Equation

Program runtime:
seconds _ (instructionsy, (cycles '\, (seconds
program — program Instructio cycle

- Instructions per program: simulator can tell us directly
 Including fractions of instruction types (e.g., %loads)

« Cycles per insn: “"CPI” also can come from simulation
« Sometimes indirectly (e.g., output is CPI x t¢)

« This is often a complex function of other things:
« Branch predictor
 Cache behavior

 Simulator can tell us model inputs (e.g., % predicted right)
« Seconds per cycle: clock period, t- ¢ — simulator input

26

How to learn more about gem5

* There is a great tutorial text:

https://www.gemb5.org/documentation/
follow the “Learning gem5” link

 Tutorial talks available on youtube:

www.youtube.com/watch?v=5UT41VsGTsg

27

https://www.gem5.org/documentation/
http://www.youtube.com/watch?v=5UT41VsGTsg

Honesty is the Best Policy

It is your job to design an honest simulator
sim cycle = sim cycle/2
- 2x performance improvement! Woo hoo!

Intel simulators have strict types
Latched structures “know"” about cycles
 throw error if you read more than n times per cycle

What about cycle time?
« What can you accomplish in hardware?
« What can you accomplish in a cycle?

Sanity Checks

« You must convince yourself that your simulator is working
« If you cannot, you will never convince anyone else!

« Branch predictor gets 50% performance improvement?
« Initial stats showing the phenomenon you exploit
 How many branches are there?

« What does perfect branch prediction offer?
« What does a stupid branch predictor offer?

 Sensitivity studies showing how your idea changes
across different values

If you don’t back up your results with secondary data, people
will just think you're lying.

What about power?

Static power — “charge” each structure for length of run
« Cache leaks certain amount of power just sitting there
« Run for 200 ms, charge for that much leakage

Dynamic power — “charge” per use
« Read the cache 10,000 times in a run, charge for that

What do we “charge” ? - really hard to get right
In fact, 0> 1 different cost than 120 (y/kes)

Most academic power numbers are basically worthless
« Squint. Trust the trends, not the numbers.

	Slide 1: CSE 560 Computer Systems Architecture
	Slide 2: Computer Architecture Simulator Primer
	Slide 3: Functional vs. Behavioral Simulators
	Slide 4: The Zen of Simulator Design
	Slide 5: Simulation Loop
	Slide 6: Latency versus Throughput
	Slide 7: Pipelining
	Slide 8: Five Stage Pipelined Datapath
	Slide 9: Pipeline Terminology
	Slide 10: Pipeline Example: Cycle 1
	Slide 11: Pipeline Example: Cycle 2
	Slide 12: Pipeline Example: Cycle 3
	Slide 13: Pipeline Example: Cycle 4
	Slide 14: Pipeline Example: Cycle 5
	Slide 15: Pipeline Example: Cycle 6
	Slide 16: Pipeline Example: Cycle 7
	Slide 17: Five Stage Pipeline Performance
	Slide 18: Parallel vs. Sequential – start here
	Slide 19: Simulator Types
	Slide 20: Execution vs. Trace-Driven Simulation
	Slide 21: gem5 Simulator Heritage
	Slide 22: Simulator Options
	Slide 23: Simulator Output
	Slide 24: Sample Output
	Slide 25: But where is CPI?
	Slide 26: Simulation and Performance Equation
	Slide 27: How to learn more about gem5
	Slide 28: Honesty is the Best Policy
	Slide 29: Sanity Checks
	Slide 30: What about power?

