
CSE 560
Computer Systems Architecture

Performance Modeling

1

Q: What is an architectural simulator?

A: tool that reproduces the behavior of a computing device

Why use a simulator?

• leverage faster, more flexible S/W development cycle

• permits more design space exploration

• facilitates validation before H/W becomes available

• level of abstraction can be throttled to design task

• can tell us quite a bit about performance

Computer Architecture Simulator Primer

2

Device
Simulator

System Inputs System Outputs

System Metrics

Functional Simulators

• Implement instruction set architecture (what programmers see)

• Execute each instruction

• Takes real inputs, creates real outputs

Behavioral simulators (also called Performance Simulators)

• Implement the microarchitecture (system internals)

• 5 stage pipeline

• Branch prediction

• Caches

• Go through the internal motions to estimate time (usually)

• Might not actually execute the program

Functional vs. Behavioral Simulators

3

The Zen of Simulator Design

• Design goals will drive which aspects are optimized

• Previous versions of this class have used:

• SimpleScalar: optimizes performance and flexibility

• VHDL: optimizes detail

• We will use gem5 in this class

• Cycle accurate chip multiprocessor

• Used lots of places! 4

Performance

Detail Flexibility

Performance: speeds design cycle

Flexibility: maximizes design scope

Detail: minimizes risk

Simulation Loop

 sim_time initial time

while (not done) {

 for each register r {

new_r new value of r based on current register values

 }

 for each register r {

r new_r

 }

 sim_time sim_time + 1 clock

 }

5

Latency versus Throughput

• Can we have both low CPI and short clock period?

• Not if datapath executes only one insn at a time

• Latency vs. Throughput

– Latency: no good way to make a single insn go faster

+ Throughput: luckily, single insn latency not so important

• Goal is to make programs, not individual insns, go faster

• Programs contain billions of insns

• Key: exploit inter-insn parallelism

6

insn0.fetch, dec, exec

Single-cycle

Multi-cycle

insn1.fetch, dec, exec

insn0.decinsn0.fetch

insn1.decinsn1.fetch

insn0.exec

insn1.exec

Pipelining

• Important performance technique

• Improves insn throughput rather instruction latency

• Begin with multi-cycle design

• One insn advances from stage 1 to 2, next insn enters stage 1

• Form of parallelism: “insn-stage parallelism”

• Maintains illusion of sequential fetch/execute loop

• Individual instruction takes the same number of stages

+ But instructions enter and leave at a much faster rate

• Laundry analogy

7

insn0.decinsn0.fetch

insn1.decinsn1.fetchMulti-cycle

Pipelined

insn0.exec

insn1.exec

insn0.decinsn0.fetch

insn1.decinsn1.fetch

insn0.exec

insn1.exec

Five Stage Pipelined Datapath

• Temporary values (PC,IR,A,B,O,D) re-latched every stage
• Why? 5 insns may be in pipeline at once with different PCs
• Notice, PC not latched after ALU stage (not needed later)
• Pipelined control: one single-cycle controller

• Control signals themselves pipelined

8

PC I$
Register

File

s1 s2 d
D$

+

4

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

Pipeline Terminology

• Five stage: Fetch, Decode, eXecute, Memory, Writeback

• Latches (pipeline registers) named by stages they separate

• PC, F/D, D/X, X/M, M/W

• d_x.a = reg_file[f_d.ir<25:21>]

• d_x.b = reg_file[f_d.ir<20:16>] 9

PC I$
Register

File

s1 s2 d
D$

+

4

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR
PC

F/D D/X X/M M/W

Pipeline Example: Cycle 1

10

PC I$
Register

File

S

X

s1 s2 d
D$

a

d

+

4

<<

2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

PC

F/D D/X X/M M/W

add $3<-$2,$1

Pipeline Example: Cycle 2

11

PC I$
Register

File

S

X

s1 s2 d
D$

a

d

+

4

<<

2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

PC

lw $4,0($5) add $3<-$2,$1

F/D D/X X/M M/W

Pipeline Example: Cycle 3

12

PC I$
Register

File

S

X

s1 s2 d
D$

a

d

+

4

<<

2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

PC

sw $6,4($7) lw $4,0($5) add $3<-$2,$1

F/D D/X X/M M/W

Pipeline Example: Cycle 4

13

PC I$
Register

File

S

X

s1 s2 d
D$

a

d

+

4

<<

2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

PC

sw $6,4($7) lw $4,0($5) add $3<-$2,$1

F/D D/X X/M M/W

Pipeline Example: Cycle 5

14

PC I$
Register

File

S

X

s1 s2 d
D$

a

d

+

4

<<

2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

PC

sw $6,4($7) lw $4,0($5) add

F/D D/X X/M M/W

Pipeline Example: Cycle 6

15

PC I$
Register

File

S

X

s1 s2 d
D$

a

d

+

4

<<

2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

PC

sw $6,4(7) lw

F/D D/X X/M M/W

Pipeline Example: Cycle 7

16

PC I$
Register

File

S

X

s1 s2 d
D$

a

d

+

4

<<

2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

PC

sw

F/D D/X X/M M/W

Five Stage Pipeline Performance

Pipelining: cut datapath into N stages (here five)

• One insn in each stage in each cycle

+ Clock period = MAX(Tinsn-mem, Tregfile, TALU, Tdata-mem)

+ Base CPI = 1: insn enters and leaves every cycle

+ Simulation models cases that make CPI > 1

• Individual insn latency increases (pipeline overhead), ok 17

PC I$

Register

File
s1 s2 d D$

+

4

Tinsn-mem Tregfile TALU Tdata-mem Tregfile

Tsinglecycle

Parallel vs. Sequential – start here

Hardware is parallel, simulation software is (typically) not.

• 5 stage pipeline vs. our simulate() method

• Can’t execute 5 stages in parallel, so…

 traverse the pipeline backwards

• HW table = software array

 dm_cache[index].data, dm_cache[index].tag

• Anything more complicated? Serial approximation of
parallel structure

• Accessing all 4 ways in a set at once? Nope.

• CAM lookup (find all entries with value X). Nope.

• Flush entire instruction window? Nope.

• Simulator is slower b/c it’s in software and its serial

18

Simulator Types

• Software Simulators

• Processor Core Simulators

• Cache Simulators

• Full-system Simulators

• Hardware Simulators (VHDL, Verilog, etc.)

• You instantiate every wire

• 3 Register read ports in SW vs. HW

• Less flexible

• More complex (and complete) model of real system

• Slower to develop

• Can use FPGAs for emulation (huge benefit for speed!)

19

What is the input to the simulator?

Trace-based Simulator (input = dynamic insns)

• Reads “trace” of insns captured from a previous execution

• Easiest to implement, no functional component needed

Execution-driven Simulator (input = static insns)

• simulator “runs” the program, generating a trace on-the-fly

• more difficult to implement, but has many advantages

• direct-execution: instrumented program runs on host

Execution vs. Trace-Driven Simulation

20

M5

gem5 Simulator Heritage

21

Processor
Models

GEMS

Memory
Models

gem5

Authored in C++
and Python

Simulator Options

Configuration File:

• Configure the system being modeled (e.g., ISA,
size of cache line, in order vs. out of order execution)

• Specify the binary executable to simulate

• Control the simulation (start, stop, etc.)

• Literally is a Python file

• Anything available in Python is available here

• Python interpreter included in simulator!

22

Simulator Output

Three output files:

• config.ini and config.json

• Lists every SimObject created and its parameters

• Indicates “what did I actually simulate?”

• Results of simulation in stats.txt file

• Dump of pretty much everything collected during simulation

• Command line option:

• -d DIR Specify directory for output files

• Overwrites output files if present

23

Sample Output

24

But where is CPI?
• CPI is not one of the statistics that is provided directly in

the stats.txt file

• What if we want to know CPI?

• Definition of CPI is average cycles/instruction

• Simulator tells us cycles – sim_ticks (almost! wrong
units, however; also need clock period)

• Simulator tells us dynamic instructions – sim_insts
(don’t confuse this with micro-operations, sim_ops)

• Divide

• In effect, we are using perf. eqn. to solve for CPI

• Simulation tick time is 1 picosecond
25

Simulation and Performance Equation

Program runtime:

• Instructions per program: simulator can tell us directly

• Including fractions of instruction types (e.g., %loads)

• Cycles per insn: “CPI” also can come from simulation

• Sometimes indirectly (e.g., output is CPI x tCLK)

• This is often a complex function of other things:

• Branch predictor

• Cache behavior

• Simulator can tell us model inputs (e.g., % predicted right)

• Seconds per cycle: clock period, tCLK – simulator input

= x xseconds instructions cycles seconds
 program program instruction cycle

26

How to learn more about gem5

• There is a great tutorial text:

 https://www.gem5.org/documentation/

 follow the “Learning gem5” link

• Tutorial talks available on youtube:

www.youtube.com/watch?v=5UT41VsGTsg

27

https://www.gem5.org/documentation/
http://www.youtube.com/watch?v=5UT41VsGTsg

Honesty is the Best Policy

• It is your job to design an honest simulator

 sim_cycle = sim_cycle/2

→ 2x performance improvement! Woo hoo!

• Intel simulators have strict types

Latched structures “know” about cycles

• throw error if you read more than n times per cycle

• What about cycle time?

• What can you accomplish in hardware?

• What can you accomplish in a cycle?

28

Sanity Checks
• You must convince yourself that your simulator is working

• If you cannot, you will never convince anyone else!

• Branch predictor gets 50% performance improvement?

• Initial stats showing the phenomenon you exploit

• How many branches are there?

• What does perfect branch prediction offer?

• What does a stupid branch predictor offer?

• Sensitivity studies showing how your idea changes
across different values

If you don’t back up your results with secondary data, people
will just think you’re lying.

29

What about power?
• Static power – “charge” each structure for length of run

• Cache leaks certain amount of power just sitting there

• Run for 200 ms, charge for that much leakage

• Dynamic power – “charge” per use

• Read the cache 10,000 times in a run, charge for that

• What do we “charge” ? → really hard to get right

• In fact, 0→ 1 different cost than 1→0 (yikes)

• Most academic power numbers are basically worthless

• Squint. Trust the trends, not the numbers.

30

	Slide 1: CSE 560 Computer Systems Architecture
	Slide 2: Computer Architecture Simulator Primer
	Slide 3: Functional vs. Behavioral Simulators
	Slide 4: The Zen of Simulator Design
	Slide 5: Simulation Loop
	Slide 6: Latency versus Throughput
	Slide 7: Pipelining
	Slide 8: Five Stage Pipelined Datapath
	Slide 9: Pipeline Terminology
	Slide 10: Pipeline Example: Cycle 1
	Slide 11: Pipeline Example: Cycle 2
	Slide 12: Pipeline Example: Cycle 3
	Slide 13: Pipeline Example: Cycle 4
	Slide 14: Pipeline Example: Cycle 5
	Slide 15: Pipeline Example: Cycle 6
	Slide 16: Pipeline Example: Cycle 7
	Slide 17: Five Stage Pipeline Performance
	Slide 18: Parallel vs. Sequential – start here
	Slide 19: Simulator Types
	Slide 20: Execution vs. Trace-Driven Simulation
	Slide 21: gem5 Simulator Heritage
	Slide 22: Simulator Options
	Slide 23: Simulator Output
	Slide 24: Sample Output
	Slide 25: But where is CPI?
	Slide 26: Simulation and Performance Equation
	Slide 27: How to learn more about gem5
	Slide 28: Honesty is the Best Policy
	Slide 29: Sanity Checks
	Slide 30: What about power?

