
CSE 560
Computer Systems Architecture

Performance

This Unit

“Speed is not everything but it’s kilometers ahead of
whatever is in second place.”

 —Ed McCreight, The Dragon Computer System

 Xerox PARC September, 1984

• Metrics

• Latency and throughput

• Reporting performance

• Benchmarking and averaging

• CPU performance equation

2

Performance: Latency vs. Throughput

• Latency (execution time): time to finish a fixed task

• Throughput (bandwidth): number of tasks in fixed time

• Different: exploit parallelism for throughput, not latency

• Often contradictory (latency vs. throughput)

• Will see many examples of this

• Choose definition of performance that matches your goals

• Single scientific program: latency; web server: throughput?

3

Problem #1: Car vs. Bus

Car: speed = 60 miles/hour, capacity = 5

Bus: speed = 20 miles/hour, capacity = 60

Task: transport passengers 10 miles

Latency (min) Throughput (PPH)

Car

Bus

4

Problem #1: Car vs. Bus

Car: speed = 60 miles/hour, capacity = 5

Bus: speed = 20 miles/hour, capacity = 60

Task: transport passengers 10 miles

Latency (min) Throughput (PPH)

Car

Bus

10 min

30 min

15 PPH

60 PPH

5

Comparing Performance

• A is X times faster than B if

 Latency(A) = Latency(B)

 X

 Throughput(A) = Throughput(B) · X

• A is Y% faster than B if

 Latency(A) = Latency(B)

 1+Y/100

 Throughput(A) = Throughput(B) · (1+Y/100)

6

Problem #2: Car vs. Bus Revisited

• Latency

Car = 10 min, Bus = 30 min

• Car is times faster than bus

• Car is % faster than bus

• Throughput

Car = 15 PPH, Bus = 60 PPH

• Bus is times faster than car

• Bus is % faster than car

7

Problem #2: Car vs. Bus Revisited

• Latency

Car = 10 min, Bus = 30 min

• Car is 3 times faster than bus

• Car is 200% faster than bus

• Throughput

Car = 15 PPH, Bus = 60 PPH

• Bus is 4 times faster than car

• Bus is 300% faster than car

8

Reporting Performance

Benchmarking & Averaging

9

Processor Performance and Workloads
Q: what does Latency(ChipA) or Throughput(ChipA) mean?

A: nothing, there must be some associated workload

• Workload: set of tasks someone cares about

→ Latency(Task1, ChipA) (car/bus Task = drive ppl 10 miles)

• Benchmarks: standard workloads

• Used to compare performance across machines

• Are/highly representative of actual programs people run

• Micro-benchmarks: non-standard non-workloads

• Tiny programs used to isolate certain aspects of performance

• Not representative of complex behaviors of real applications

• Frequently helpful to examine isolated performance
questions

10

SPEC Benchmarks
• SPEC (Standard Performance Evaluation Corporation)

• Consortium that collects, standardizes, and distributes
benchmarks, http://www.spec.org/

• Post SPECmark results for different processors

• 1 number that represents performance for entire suite

• Benchmark suites for CPU, Java, I/O, Web, Mail, etc.

• Updated every few years: so companies don’t target
benchmarks

• SPEC CPU 2006

• 12 “integer”: bzip2, gcc, perl, hmmer (genomics), h264, …

• 17 “floating point”: wrf (weather), povray, sphynx3 (speech)…

• Written in C/C++ and Fortran

• SPEC CPU 2017

• 2 “integer” suites: latency vs. throughput

• 2 “floating point” suites: latency vs. throughput
11

http://www.spec.org/

Other Benchmarks
• Parallel benchmarks

• SPLASH2: Stanford Parallel Applications for Shared Memory
• NAS: another parallel benchmark suite
• SPECopenMP: parallelized versions of SPECfp
• SPECjbb: Java multithreaded database-like workload

• Transaction Processing Council (TPC)
• TPC-C: On-line transaction processing (OLTP)
• TPC-H/R: Decision support systems (DSS)
• TPC-W: E-commerce database backend workload
• Have parallelism (intra-query and inter-query), heavy I/O, memory

• Benchmarks for other domains
• DIBS: Data Integration Benchmark Suite (from our group at WashU)
• MiBench: Embedded systems (from Michigan)
• MediaBench: Media applications (out of UCLA)

• Companies have internal benchmarks
• What’s going to be important in the future?
• Overfitting

12

Mean (Average) Performance Numbers
3 Types of Means

• Arithmetic

• for units that are proportional to time (e.g., latency)

• Harmonic

• for units that are inversely proportional to time (e.g.,
throughput)

• Geometic

• For unitless quantities (e.g., speedup ratios)

Know when to use which one & how it is computed.

13

Arithmetic Mean
For units that are proportional to time (e.g., latency)

Chip A, N programs:

∑i=1..N Latency(Pi, A)
N

You can add latencies, but not throughputs
• Latency(P1+P2, A) = Latency(P1, A) + Latency(P2, A)

• Throughput(P1+P2, A) ≠ Throughput(P1, A) +
 Throughput(P2, A)

• 1 mile @ 10 miles/hour + 1 mile @ 100 miles/hour
• Average is not 55 miles/hour
• Need a different mean….

14

Harmonic Mean
For units that are inversely proportional to time (e.g., throughput)

Chip A, N programs:

N

∑i=1..N 1/Throughput(Pi, A)

P1: 1 mile @ 30 miles/hour

P2: 1 mile @ 90 miles/hour

2

1/30 + 1/90 = 45 mph

15

Geometric Mean
For unitless quantities (e.g., speedup ratios)

 ∏i=1..N Speedup(Pi, A)√ N

16

Performance Equation(s)

17

Processor Performance Equation

Program runtime:

• Instructions per program: “dynamic instruction count”
• Runtime count of instructions executed by the program
• Determined by program, compiler, ISA

• Cycles per instruction: “CPI” (typical range: 2 to 0.5)
• About how many cycles does an instruction take to execute?
• Determined by program, compiler, ISA, micro-architecture

• Seconds per cycle: clock period, length of each cycle
• Inverse metric: cycles/second (Hertz) or cycles/ns (GHz)
• Determined by micro-architecture, technology parameters

• For lower latency (=better performance) minimize all three
• Difficult: often pull against one another

= x xseconds instructions cycles seconds
 program program instruction cycle

18

(Dynamic

instruction count)

(CPI) (Clock period)(Execution time)

Cycles per Instruction (CPI)

• CPI: Cycle/instruction for a program on average

• IPC = 1/CPI

• Used more frequently than CPI

• Favored because “bigger is better”, but harder to compute with

• Different instructions have different cycle costs

• E.g., “add” typically takes 1 cycle, “divide” takes >10 cycles

• Depends on relative instruction frequencies

• CPI example

• Program has equal ratio: integer, memory ops, floating point

• Cycles per instruction: integer = 1, memory = 2, FP = 3

• What is the CPI? (33% × 1) + (33% × 2) + (33% × 3) = 2

• Caveat: this sort of calculation ignores many effects

• Back-of-the-envelope arguments only

19

Problem #3: CPI Example
• Assume a processor with instruction frequencies and costs

• Integer ALU: 50%, 1 cycle

• Load: 20%, 5 cycle

• Store: 10%, 1 cycle

• Branch: 20%, 2 cycle

• Which change would improve performance more?

A: “Branch prediction” to reduce branch cost to 1 cycle?

B: “Cache” to reduce load cost to 3 cycles?

• Compute CPI

INT LD ST BR CPI

Base

A

B

20

Problem #3: CPI Example
• Assume a processor with instruction frequencies and costs

• Integer ALU: 50%, 1 cycle

• Load: 20%, 5 cycle

• Store: 10%, 1 cycle

• Branch: 20%, 2 cycle

• Which change would improve performance more?

A: “Branch prediction” to reduce branch cost to 1 cycle?

B: “Cache” to reduce load cost to 3 cycles?

• Compute CPI

(winner)

INT LD ST BR CPI

Base

A

B

0.5 x 1 0.2 x 5 0.1 x 1 0.2 x 1 1.8

0.5 x 1 0.2 x 3 0.1 x 1 0.2 x 2 1.6

0.5 x 1 0.2 x 5 0.1 x 1 0.2 x 2 2.0

21

MHz (MegaHertz) and GHz (GigaHertz)
• 1 Hertz = 1 cycle per second

1 GHz is 1 cycle per nanosecond, 1 GHz = 1000 MHz

• General public (mostly) ignores CPI

• Equates clock frequency with performance!

• Which processor would you buy?

• Processor A: CPI = 2, clock = 5 GHz

• Processor B: CPI = 1, clock = 3 GHz

• Probably A, but B is faster (assuming same ISA/compiler)

• Classic example

• 800 MHz PentiumIII faster than 1 GHz Pentium4!

• Recent example: Core i7 faster clock-per-clock than Core 2

• Same ISA and compiler!

• Meta-point: danger of partial performance metrics!

22

MIPS (performance metric, not the ISA)
• (Micro) architects often ignore dynamic instruction count

• Typically have one ISA, one compiler → treat it as fixed
• CPU performance equation becomes

• MIPS (millions of instructions per second)
• Cycles / second: clock frequency (in MHz)
• Ex: CPI = 2, clock = 500 MHz → 0.5 x 500 MHz = 250 MIPS

• Pitfall: may vary inversely with actual performance
– Compiler removes insns, program faster, but lower MIPS
– Work per instruction varies (multiply vs. add, FP vs. integer)

Latency: seconds cycles seconds
 insn insn cycle

Throughput: insns insns cycles
 second cycle second

= x

x=

23

Latency vs. Throughput Revisited

• Two views of performance: latency vs. throughput

• Two scopes of performance: instruction vs. program

• Single instruction latency

– Doesn’t matter: programs comprised of billions+ of insns

– Difficult to reduce anyway

– Making 1 insn faster doesn’t help unless it’s the slowest insn

• Instruction throughput → program latency or throughput

+ Can reduce using parallelism

• Multiple cores (more units executing instructions)… more later

• Inter-instruction parallelism example: pipelining

24

In the Beginning...

…was the single-cycle data path

• Fetch, decode, execute one complete insn every cycle

+ Low CPI: 1 by definition

– Long clock period: set by longest insn (logic + wire delays)

Tsinglecycle

PC I$
Register

File

s1 s2 d
D$

+

4

25

Inter-Instruction Parallelism: Pipelining

Pipelining: cut datapath into N stages (here 5)

• Separate each stage of logic by latches

• Clock period: maximum logic + wire delay of any stage
 = max(Tinsn-mem, Tregfile, TALU, Tdata-mem)

• Base CPI = 1, but actual CPI > 1: pipeline stalls a lot

• Individual insn latency increases (pipeline overhead), that’s ok

PC
Insn

Mem

Register

File
s1 s2 d

Data

Mem

+

4

Tinsn-mem Tregfile TALU Tdata-mem Tregfile

26

Pipelining: Clock Frequency vs. IPC
• Increase number of pipeline stages (“pipeline depth”)

• Keep cutting datapath into finer pieces

+ Increases clock frequency (decreases clock period)

• Latch overhead & unbalanced stages cause sub-linear scaling

• Double the number of stages won’t quite double the frequency

– Decreases IPC (increase CPI)

• More pipeline “hazards”, higher branch penalty

• Memory latency relatively higher (same absolute lat., more cycles)

– Result: at some point, deeper pipelines decrease performance

• “Optimal” pipeline depth is program and technology specific

• Classic example

• Pentium III: 12 stage pipeline, 800 MHz

• Pentium 4: 22 stage pipeline, 1 GHz (and slower due to IPC)

Note: clock frequency implies CPU clock. Other system components have own clocks (or not).

27

Problem #4: CPI and Clock Frequency

Non-Mem Mem CPI MIPS Speedup

1 GHz

2 GHz

∞ GHz

1 GHz processor with

• 80% non-memory instructions @ 1 cycle

• 20% memory insns @ 6 nanoseconds (= 6 cycles)

Double the core clock frequency?

• Increasing processor clock doesn’t accelerate memory!

• Non-memory instructions retain 1-cycle latency

• Memory instructions now have 12-cycle latency

Infinite clock frequency?

• Hello, Amdahl’s Law!

28

Problem #4: CPI and Clock Frequency
1 GHz processor with

• 80% non-memory instructions @ 1 cycle

• 20% memory insns @ 6 nanoseconds (= 6 cycles)

Double the core clock frequency?

• Increasing processor clock doesn’t accelerate memory!

• Non-memory instructions retain 1-cycle latency

• Memory instructions now have 12-cycle latency

Infinite clock frequency?

• Hello, Amdahl’s Law!

Non-Mem Mem CPI MIPS Speedup

1 GHz

2 GHz

∞ GHz

0.8 x 1 0.2 x 6 2.0 500

1M insn / (200K x 6 ns) 833 1.66

0.8 x 1 0.2 x 12 3.2 625 1.25 (<< 2)

29

Measuring CPI

• How are CPI and execution-time actually measured?

• Execution time? stopwatch timer (Unix “time” command)

• CPI = CPU time / (clock period x dynamic insn count)

• How is dynamic instruction count measured?

• More useful is CPI breakdown (CPICPU, CPIMEM, etc.)

• So we know what performance problems are and what to fix

• Hardware event counters

• Available in most processors today

• One way to measure dynamic instruction count

• Calculate CPI using counter frequencies / known event costs

• Cycle-level micro-architecture simulation (e.g., SimpleScalar)

+ Measure exactly what you want … and impact of potential fixes!

• Method of choice for many micro-architects

• Hardware emulation (e.g., on FPGAs) becoming common

30

Performance Rules of Thumb

Amdahl’s Law: ”Make the common case fast”

• Literally: total speedup limited by non-accelerated piece

• Example: can optimize 50% of program A

• Even “magic” optimization that makes this 50% disappear…

• …only yields a 2X speedup

Corollary: build a balanced system

• Don’t optimize 1% to the detriment of other 99%

• Don’t over-engineer capabilities that cannot be utilized

Design for actual performance, not peak performance

• Peak perf: “Performance you are guaranteed not to exceed”

• Greater than “actual” or “average” or “sustained” performance

• Why? Caches misses, branch mispredictions, limited ILP, etc.

• For actual performance X, machine capability must be > X

31

Summary
• Latency:

• Instructions / program: dynamic instruction count

• Function of program, compiler, instruction set architecture

• Cycles / instruction: CPI

• Function of program, compiler, ISA, micro-architecture

• Seconds / cycle: clock period

• Function of micro-architecture, technology parameters

• Optimize each component

• CSE 560 focuses mostly on CPI (caches, parallelism)

• …but some on dynamic instruction count (compiler, ISA)

• …and some on clock frequency (pipelining, technology)

= x xseconds instructions cycles seconds
 program program instruction cycle

32

	Slide 1: CSE 560 Computer Systems Architecture
	Slide 2: This Unit
	Slide 3: Performance: Latency vs. Throughput
	Slide 4: Problem #1: Car vs. Bus
	Slide 5: Problem #1: Car vs. Bus
	Slide 6: Comparing Performance
	Slide 7: Problem #2: Car vs. Bus Revisited
	Slide 8: Problem #2: Car vs. Bus Revisited
	Slide 9: Reporting Performance
	Slide 10: Processor Performance and Workloads
	Slide 11: SPEC Benchmarks
	Slide 12: Other Benchmarks
	Slide 13: Mean (Average) Performance Numbers
	Slide 14: Arithmetic Mean
	Slide 15: Harmonic Mean
	Slide 16: Geometric Mean
	Slide 17: Performance Equation(s)
	Slide 18: Processor Performance Equation
	Slide 19: Cycles per Instruction (CPI)
	Slide 20: Problem #3: CPI Example
	Slide 21: Problem #3: CPI Example
	Slide 22: MHz (MegaHertz) and GHz (GigaHertz)
	Slide 23: MIPS (performance metric, not the ISA)
	Slide 24: Latency vs. Throughput Revisited
	Slide 25: In the Beginning...
	Slide 26: Inter-Instruction Parallelism: Pipelining
	Slide 27: Pipelining: Clock Frequency vs. IPC
	Slide 28: Problem #4: CPI and Clock Frequency
	Slide 29: Problem #4: CPI and Clock Frequency
	Slide 30: Measuring CPI
	Slide 31: Performance Rules of Thumb
	Slide 32: Summary

