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Performance



This Unit

“Speed is not everything but it’s kilometers ahead of 
whatever is in second place.”

  —Ed McCreight, The Dragon Computer System

     Xerox PARC September, 1984

• Metrics

• Latency and throughput

• Reporting performance

• Benchmarking and averaging

• CPU performance equation
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Performance: Latency vs. Throughput

• Latency (execution time): time to finish a fixed task

• Throughput (bandwidth): number of tasks in fixed time

• Different: exploit parallelism for throughput, not latency

• Often contradictory (latency vs. throughput)

• Will see many examples of this

• Choose definition of performance that matches your goals

• Single scientific program: latency; web server: throughput?
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Problem #1: Car vs. Bus

Car: speed = 60 miles/hour, capacity = 5

Bus: speed = 20 miles/hour, capacity = 60

Task: transport passengers 10 miles

Latency (min) Throughput (PPH)

Car

Bus
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Problem #1: Car vs. Bus

Car: speed = 60 miles/hour, capacity = 5

Bus: speed = 20 miles/hour, capacity = 60

Task: transport passengers 10 miles

Latency (min) Throughput (PPH)

Car

Bus

10 min

30 min

15 PPH

60 PPH
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Comparing Performance

• A is X times faster than B if

    Latency(A) = Latency(B)

                  X

 Throughput(A) = Throughput(B) · X

• A is Y% faster than B if

 Latency(A) = Latency(B)

          1+Y/100

 Throughput(A) = Throughput(B) · (1+Y/100)
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Problem #2: Car vs. Bus Revisited

• Latency

Car = 10 min, Bus = 30 min

• Car is  times faster than bus

• Car is % faster than bus

• Throughput

Car = 15 PPH, Bus = 60 PPH

• Bus is  times faster than car

• Bus is % faster than car
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Problem #2: Car vs. Bus Revisited

• Latency

Car = 10 min, Bus = 30 min

• Car is 3 times faster than bus

• Car is 200% faster than bus

• Throughput

Car = 15 PPH, Bus = 60 PPH

• Bus is 4 times faster than car

• Bus is 300% faster than car
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Reporting Performance

Benchmarking & Averaging
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Processor Performance and Workloads
Q: what does Latency(ChipA) or Throughput(ChipA) mean?

A: nothing, there must be some associated workload

• Workload: set of tasks someone cares about

→ Latency(Task1, ChipA)  (car/bus Task = drive ppl 10 miles) 

• Benchmarks: standard workloads

• Used to compare performance across machines

• Are/highly representative of actual programs people run

• Micro-benchmarks: non-standard non-workloads

• Tiny programs used to isolate certain aspects of performance

• Not representative of complex behaviors of real applications

• Frequently helpful to examine isolated performance 
questions
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SPEC Benchmarks
• SPEC (Standard Performance Evaluation Corporation)

• Consortium that collects, standardizes, and distributes 
benchmarks, http://www.spec.org/

• Post SPECmark results for different processors

• 1 number that represents performance for entire suite

• Benchmark suites for CPU, Java, I/O, Web, Mail, etc.

• Updated every few years: so companies don’t target 
benchmarks

• SPEC CPU 2006

• 12 “integer”: bzip2, gcc, perl, hmmer (genomics), h264, …

• 17 “floating point”: wrf (weather), povray, sphynx3 (speech)…

• Written in C/C++ and Fortran

• SPEC CPU 2017

• 2 “integer” suites: latency vs. throughput

• 2 “floating point” suites: latency vs. throughput
11

http://www.spec.org/


Other Benchmarks
• Parallel benchmarks

• SPLASH2: Stanford Parallel Applications for Shared Memory
• NAS: another parallel benchmark suite
• SPECopenMP: parallelized versions of SPECfp
• SPECjbb: Java multithreaded database-like workload

• Transaction Processing Council (TPC)
• TPC-C: On-line transaction processing (OLTP)
• TPC-H/R: Decision support systems (DSS)
• TPC-W: E-commerce database backend workload
• Have parallelism (intra-query and inter-query), heavy I/O, memory

• Benchmarks for other domains
• DIBS: Data Integration Benchmark Suite (from our group at WashU)
• MiBench: Embedded systems (from Michigan)
• MediaBench: Media applications (out of UCLA)

• Companies have internal benchmarks
• What’s going to be important in the future?
• Overfitting 
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Mean (Average) Performance Numbers
3 Types of Means

• Arithmetic

• for units that are proportional to time (e.g., latency)

• Harmonic

• for units that are inversely proportional to time (e.g., 
throughput)

• Geometic

• For unitless quantities (e.g., speedup ratios)

Know when to use which one & how it is computed.
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Arithmetic Mean
For units that are proportional to time (e.g., latency)

Chip A, N programs:

∑i=1..N Latency(Pi, A)
N

You can add latencies, but not throughputs
• Latency(P1+P2, A) = Latency(P1, A) + Latency(P2, A)

• Throughput(P1+P2, A) ≠ Throughput(P1, A) +   
         Throughput(P2, A)

• 1 mile @ 10 miles/hour + 1 mile @ 100 miles/hour
• Average is not 55 miles/hour
• Need a different mean….
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Harmonic Mean
For units that are inversely proportional to time (e.g., throughput)

Chip A, N programs:

N 

∑i=1..N 1/Throughput(Pi, A)

P1: 1 mile @ 30 miles/hour

P2: 1 mile @ 90 miles/hour

2

1/30 + 1/90 = 45 mph 
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Geometric Mean
For unitless quantities (e.g., speedup ratios)

     ∏i=1..N Speedup(Pi, A)√ N
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Performance Equation(s)
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Processor Performance Equation

Program runtime:

• Instructions per program: “dynamic instruction count”
• Runtime count of instructions executed by the program
• Determined by program, compiler, ISA

• Cycles per instruction: “CPI”   (typical range: 2 to 0.5)
• About how many cycles does an instruction take to execute?
• Determined by program, compiler, ISA, micro-architecture

• Seconds per cycle: clock period, length of each cycle
• Inverse metric: cycles/second (Hertz) or cycles/ns (GHz)
• Determined by micro-architecture, technology parameters

• For lower latency (=better performance) minimize all three
• Difficult: often pull against one another

= x xseconds         instructions         cycles         seconds
 program           program         instruction          cycle
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Cycles per Instruction (CPI)

• CPI: Cycle/instruction for a program on average

• IPC = 1/CPI

• Used more frequently than CPI

• Favored because “bigger is better”, but harder to compute with

• Different instructions have different cycle costs

• E.g., “add” typically takes 1 cycle, “divide” takes >10 cycles

• Depends on relative instruction frequencies

• CPI example

• Program has equal ratio: integer, memory ops, floating point

• Cycles per instruction: integer = 1, memory = 2, FP = 3

• What is the CPI? (33% × 1) + (33% × 2) + (33% × 3) = 2

• Caveat: this sort of calculation ignores many effects

• Back-of-the-envelope arguments only
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Problem #3: CPI Example
• Assume a processor with instruction frequencies and costs

• Integer ALU: 50%, 1 cycle

• Load: 20%, 5 cycle

• Store: 10%, 1 cycle

• Branch: 20%, 2 cycle

• Which change would improve performance more?

A:  “Branch prediction” to reduce branch cost to 1 cycle?

B:  “Cache” to reduce load cost to 3 cycles?

• Compute CPI

INT LD ST BR CPI

Base

A

B
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Problem #3: CPI Example
• Assume a processor with instruction frequencies and costs

• Integer ALU: 50%, 1 cycle

• Load: 20%, 5 cycle

• Store: 10%, 1 cycle

• Branch: 20%, 2 cycle

• Which change would improve performance more?

A:  “Branch prediction” to reduce branch cost to 1 cycle?

B:  “Cache” to reduce load cost to 3 cycles?

• Compute CPI

(winner)

INT LD ST BR CPI

Base

A

B

0.5 x 1 0.2 x 5 0.1 x 1 0.2 x 1 1.8

0.5 x 1 0.2 x 3 0.1 x 1 0.2 x 2 1.6

0.5 x 1 0.2 x 5 0.1 x 1 0.2 x 2 2.0
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MHz (MegaHertz) and GHz (GigaHertz)
• 1 Hertz = 1 cycle per second

1 GHz is 1 cycle per nanosecond, 1 GHz = 1000 MHz 

• General public (mostly) ignores CPI

• Equates clock frequency with performance!

• Which processor would you buy?

• Processor A: CPI = 2, clock = 5 GHz

• Processor B: CPI = 1, clock = 3 GHz

• Probably A, but B is faster (assuming same ISA/compiler)

• Classic example

• 800 MHz PentiumIII faster than 1 GHz Pentium4! 

• Recent example: Core i7 faster clock-per-clock than Core 2

• Same ISA and compiler!

• Meta-point: danger of partial performance metrics!
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MIPS (performance metric, not the ISA)
• (Micro) architects often ignore dynamic instruction count

• Typically have one ISA, one compiler → treat it as fixed
• CPU performance equation becomes

• MIPS (millions of instructions per second)
• Cycles / second: clock frequency (in MHz)
• Ex: CPI = 2, clock = 500 MHz → 0.5 x 500 MHz = 250 MIPS

• Pitfall: may vary inversely with actual performance
– Compiler removes insns, program faster, but lower MIPS
– Work per instruction varies (multiply vs. add, FP vs. integer)

Latency:   seconds      cycles  seconds
       insn           insn   cycle

Throughput:    insns          insns   cycles
    second         cycle  second

= x

x= 
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Latency vs. Throughput Revisited

• Two views of performance: latency vs. throughput

• Two scopes of performance: instruction vs. program

• Single instruction latency

– Doesn’t matter: programs comprised of billions+ of insns

– Difficult to reduce anyway

– Making 1 insn faster doesn’t help unless it’s the slowest insn

• Instruction throughput → program latency or throughput

+ Can reduce using parallelism

• Multiple cores (more units executing instructions)… more later

• Inter-instruction parallelism example: pipelining
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In the Beginning...

…was the single-cycle data path

• Fetch, decode, execute one complete insn every cycle

+ Low CPI: 1 by definition

– Long clock period: set by longest insn (logic + wire delays)

Tsinglecycle

PC I$
Register

File

s1 s2 d
D$

+

4
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Inter-Instruction Parallelism: Pipelining

Pipelining: cut datapath into N stages (here 5)

• Separate each stage of logic by latches

• Clock period: maximum logic + wire delay of any stage 
                                 =  max(Tinsn-mem, Tregfile, TALU, Tdata-mem) 

• Base CPI = 1, but actual CPI > 1: pipeline stalls a lot

• Individual insn latency increases (pipeline overhead), that’s ok

PC
Insn

Mem

Register

File
s1 s2 d

Data

Mem

+

4

Tinsn-mem Tregfile TALU Tdata-mem Tregfile
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Pipelining: Clock Frequency vs. IPC
• Increase number of pipeline stages (“pipeline depth”)

• Keep cutting datapath into finer pieces

+ Increases clock frequency (decreases clock period) 

• Latch overhead & unbalanced stages cause sub-linear scaling

• Double the number of stages won’t quite double the frequency

– Decreases IPC (increase CPI)

• More pipeline “hazards”, higher branch penalty

• Memory latency relatively higher (same absolute lat., more cycles)

– Result: at some point, deeper pipelines decrease performance

• “Optimal” pipeline depth is program and technology specific

• Classic example

• Pentium III: 12 stage pipeline, 800 MHz

• Pentium 4: 22 stage pipeline, 1 GHz  (and slower due to IPC)

Note: clock frequency implies CPU clock. Other system components have own clocks (or not).
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Problem #4: CPI and Clock Frequency

Non-Mem Mem CPI MIPS Speedup

1 GHz

2 GHz

∞ GHz

1 GHz processor with

• 80% non-memory instructions @ 1 cycle

• 20% memory insns @ 6 nanoseconds (= 6 cycles)

Double the core clock frequency?

• Increasing processor clock doesn’t accelerate memory!

• Non-memory instructions retain 1-cycle latency

• Memory instructions now have 12-cycle latency

Infinite clock frequency?

• Hello, Amdahl’s Law!
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Problem #4: CPI and Clock Frequency
1 GHz processor with

• 80% non-memory instructions @ 1 cycle

• 20% memory insns @ 6 nanoseconds (= 6 cycles)

Double the core clock frequency?

• Increasing processor clock doesn’t accelerate memory!

• Non-memory instructions retain 1-cycle latency

• Memory instructions now have 12-cycle latency

Infinite clock frequency?

• Hello, Amdahl’s Law! 

Non-Mem Mem CPI MIPS Speedup

1 GHz

2 GHz

∞ GHz

0.8 x 1 0.2 x 6 2.0 500

1M insn / (200K x 6 ns) 833 1.66

0.8 x 1 0.2 x 12 3.2 625 1.25 (<< 2)
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Measuring CPI

• How are CPI and execution-time actually measured?

• Execution time?  stopwatch timer (Unix “time” command)

• CPI = CPU time / (clock period x dynamic insn count)

• How is dynamic instruction count measured?

• More useful is CPI breakdown (CPICPU, CPIMEM, etc.)

• So we know what performance problems are and what to fix

• Hardware event counters

• Available in most processors today

• One way to measure dynamic instruction count

• Calculate CPI using counter frequencies / known event costs

• Cycle-level micro-architecture simulation (e.g., SimpleScalar)

+ Measure exactly what you want … and impact of potential fixes!

• Method of choice for many micro-architects

• Hardware emulation (e.g., on FPGAs) becoming common
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Performance Rules of Thumb

Amdahl’s Law:     ”Make the common case fast”

• Literally: total speedup limited by non-accelerated piece

• Example: can optimize 50% of program A

• Even “magic” optimization that makes this 50% disappear…

• …only yields a 2X speedup

Corollary: build a balanced system

• Don’t optimize 1% to the detriment of other 99%

• Don’t over-engineer capabilities that cannot be utilized

Design for actual performance, not peak performance

• Peak perf: “Performance you are guaranteed not to exceed”

• Greater than “actual” or “average” or “sustained” performance

• Why? Caches misses, branch mispredictions, limited ILP, etc.

• For actual performance X, machine capability must be > X
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Summary
• Latency:

• Instructions / program: dynamic instruction count

• Function of program, compiler, instruction set architecture

• Cycles / instruction: CPI

• Function of program, compiler, ISA, micro-architecture

• Seconds / cycle: clock period

• Function of micro-architecture, technology parameters

• Optimize each component

• CSE 560 focuses mostly on CPI (caches, parallelism) 

• …but some on dynamic instruction count (compiler, ISA)

• …and some on clock frequency (pipelining, technology) 

= x xseconds         instructions         cycles         seconds
 program           program         instruction         cycle
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