
CSE 560
Computer Systems Architecture

Hardware Multithreading

1

This Unit: Multithreading (MT)

• Why multithreading (MT)?

• Utilization vs. performance

• Three implementations

• Coarse-grained MT

• Fine-grained MT

• Simultaneous MT (SMT)

2

Application

OS

FirmwareCompiler

I/O

Memory

Digital Circuits

Gates & Transistors

CPU

Performance And Utilization
• Performance (IPC) important

• Utilization (actual IPC / peak IPC) important too

• Even moderate superscalars (e.g., 4-way) not fully utilized

• Average sustained IPC: 1.5–2 → < 50% utilization

• Mis-predicted branches

• Cache misses, especially last-level cache

• Data dependences

• Multi-threading (MT)

• Improve utilization by multi-plexing multiple threads on
single CPU

• One thread cannot fully utilize CPU? Maybe 2, 4 (or 100) can

3

Simple Multithreading
• Time evolution of issue slot

• 4-issue processor

4

Superscalar

cache

miss

ti
m

e

Simple Multithreading
• Time evolution of issue slot

• 4-issue processor

• Where does it find a thread? Same problem as multi-core

• Same shared-memory abstraction

5

Superscalar

cache

miss

Multithreading

Fill in with instructions

from another thread

ti
m

e

Latency vs Throughput
• MT trades (single-thread) latency for throughput

– Sharing processor degrades latency of individual threads

+ But improves aggregate latency of both threads

+ Improves utilization

• Example

• Thread A: individual latency=10s, latency with thread B=15s

• Thread B: individual latency=20s, latency with thread A=25s

• Sequential latency (first A then B or vice versa): 30s

• Parallel latency (A and B simultaneously): 25s

– MT slows each thread by 5s

+ But improves total latency by 5s

• Different workloads have different parallelism

• SpecFP has lots of ILP (can use an 8-wide machine)

• Server workloads have TLP (can use multiple threads)

6

1 2

3 4

5 6

MT Implementations: Similarities
• How do multiple threads share a single processor?

• Different sharing mechanisms for different kinds of structures

• Depend on what kind of state structure stores

• No state: ALUs

• Dynamically shared

• Persistent hard state (aka “context”): PC, registers

• Replicated

• Persistent soft state: caches, bpred

• Dynamically partitioned (like multi-program uni-processor)
• TLBs need thread ids, caches/bpred tables don’t

• Exception: ordered “soft” state (BHR, RAS) is replicated

• Transient state: pipeline latches, ROB, RS

• Partitioned … somehow

7

MT Implementations: Differences
• Main question: thread scheduling policy

• When to switch from one thread to another?
• Related question: pipeline partitioning

• How exactly do threads share the pipeline itself?

• Depends on
• What kind of latencies (specifically, length) you want to

tolerate
• How much single thread performance you are willing to

sacrifice

• Three designs
1. Coarse-grain multithreading (CGMT)
2. Fine-grain multithreading (FGMT)
3. Simultaneous multithreading (SMT)

8

The Standard Multithreading Picture

• Time evolution of issue slots

• Color = thread

9

CGMT FGMT SMTSuperscalar

ti
m

e

Coarse-Grain Multithreading (CGMT)

+ Sacrifices little single thread performance (of 1 thread)

– Tolerates only long latencies (e.g., L2 misses)

• Thread scheduling policy

• Designate a “preferred” thread (e.g., thread A)

• Switch to thread B on thread A L2 miss

• Switch back to A when A L2 miss returns

• Pipeline partitioning

• None, flush on switch

– Can’t tolerate latencies shorter than 2x pipeline depth

• Need short in-order pipeline for good performance

• Example: IBM Northstar/Pulsar

10

CGMT
Original:

11

regfile

D$
I$

B

P

regfile

regfile

thread scheduler

L2 miss?

I$

B

P

D$

CGMT:

Fine-Grain Multithreading (FGMT)
– Sacrifices significant single thread performance

+ Tolerates latencies (e.g., L2 misses, mispredicted
branches, etc.)

• Thread scheduling policy

• Switch threads every cycle (round-robin), L2 miss or no

• Pipeline partitioning

• Dynamic, no flushing

• Length of pipeline doesn’t matter so much

– Need a lot of threads

12

7 8

9 10

11 12

Fine-Grain Multithreading (FGMT)
• Extreme example: Denelcor HEP

• So many threads (100+), it didn’t even need caches

• Failed commercially (or so we thought!)

• Not popular today (in traditional processors)

• Many threads → many register files

• One commercial example is Cray Urika (with historical
ties to Denelcor HEP, Burton Smith architected both)

• Is popular today (in GPUs)

• SIMT (single instruction, multiple threads)

• Data parallel, in-order execution

• Pipeline isn’t the same as what we’ve been studying,
but it does use FGMT

13

Fine-Grain Multithreading

FGMT:

• Multiple threads in pipeline at once

• (Many) more threads

14

regfile

regfile

regfile

regfile

thread scheduler

D$
I$

B

P

Vertical and Horizontal Under-Utilization

• FGMT and CGMT reduce vertical under-utilization

• Nothing issues in a given cycle

• Do not help with horizontal under-utilization

• Not all issue slots issue in a given cycle (for superscalar)

15

CGMT FGMT SMT

ti
m

e

Simultaneous Multithreading (SMT)

What can issue insns from multiple threads in one cycle?

• Same thing that issues insns from multiple parts of same
program…

 …out-of-order execution
Simultaneous multithreading (SMT): OOO + FGMT

• Aka “hyper-threading”

• Observation: once insns are renamed, scheduler doesn’t care
which thread they come from (well, for non-loads at least)

• Some examples

• IBM Power5: 4-way issue, 2 threads

• Intel Pentium4: 3-way issue, 2 threads

• Intel Core i7: 4-way issue, 2 threads

• Alpha 21464: 8-way issue, 4 threads (canceled)

Notice a pattern? #threads (T) x 2 = # issue width (N)

16

Simultaneous Multithreading (SMT)

SMT:

• Replicate map table, share (larger) physical register file

17

regfile

D$
I$

B

P

map table

map tables

I$

B

P

D$

thread scheduler

regfile

Original:

SMT Resource Partitioning

• Physical regfile and insn buffer entries shared at fine-grain

• Physically unordered and so fine-grain sharing is possible

• How are physically ordered structures (ROB/LSQ) shared?

– Fine-grain sharing (below) entangles commit (and squash)

• Allowing threads to commit independently is important

18

map tables

I$

B

P

D$

thread scheduler

regfile

13 14

15 16

17 18

Static & Dynamic Resource Partitioning

Static partitioning (below)

• T equal-sized contiguous partitions

± No starvation, sub-optimal utilization (fragmentation)

Dynamic partitioning

• P > T partitions, available partitions assigned on need basis

± Better utilization, possible starvation

• ICOUNT: fetch policy prefers thread with fewest in-flight insns

Couple both with larger ROBs/LSQs

19

I$

B

P

D$

regfile

Multithreading Issues
Shared soft state (caches, branch predictors, TLBs, etc.)

Key example: cache interference

• General concern for all MT variants

• Can the working sets of multiple threads fit in the caches?

• Shared memory threads help: Single Program Multiple Data (SPMD)

+ Same insns → share I$

+ Shared data → less D$ contention

• MT is good for workloads with shared insn/data

• To keep miss rates low, SMT might need a larger L2 (which is OK)

• Out-of-order tolerates L1 misses

Large physical register file (and map table)

• physical registers = (#threads x #arch-regs) + #in-flight insns

• map table entries = (#threads x #arch-regs)

20

Subtleties Of Sharing Soft State

What needs a thread ID?

• Caches

• TLBs

• BTB (branch target buffer)

• BHT (branch history table)

21

Necessity Of Sharing Soft State

Caches are shared naturally…

• Physically-tagged: address translation distinguishes
different threads

TLBs need explicit thread IDs to be shared

• Virtually-tagged: entries of different threads
indistinguishable

• Thread IDs are only a few bits: enough to identify on-chip
contexts

22

Costs Of Sharing Soft State
BTB: Thread IDs make sense

• entries are already large, a few extra bits / entry won’t matter

• Different thread’s target prediction → definite mis-prediction

BHT: make less sense

• entries are small, a few extra bits / entry is huge overhead

• Different thread’s direction prediction → possible mis-prediction

Ordered soft-state should be replicated

• Examples: Branch History Register (BHR*), Return Address
Stack (RAS)

• Otherwise they become meaningless… Fortunately, it is typically
small

23

Multithreading vs. Multicore
If you wanted to run multiple threads would you build a…

• A multicore: multiple separate pipelines?

• A multithreaded processor: a single larger pipeline?

Both will get you throughput on multiple threads

• Multicore core will be simpler, possibly faster clock

• SMT will get you better performance (IPC) on a single thread

• SMT is basically an ILP engine that converts TLP to ILP

• Multicore is mainly a TLP (thread-level parallelism) engine

Do both

• Sun’s Niagara (UltraSPARC T1)

• 8 processors, each with 4-threads (non-SMT threading)

• 1GHz clock, in-order, short pipeline (6 stages or so)

• Designed for power-efficient “throughput computing”

24

19 20

21 22

23 24

Multithreading Summary

• Latency vs. throughput

• Partitioning different processor resources

• Three multithreading variants

• Coarse-grain: no single-thread degradation, but long
latencies only

• Fine-grain: other end of the trade-off

• Simultaneous: fine-grain with out-of-order

• Multithreading vs. chip multiprocessing

28

28

	Slide 1: CSE 560 Computer Systems Architecture
	Slide 2: This Unit: Multithreading (MT)
	Slide 3: Performance And Utilization
	Slide 4: Simple Multithreading
	Slide 5: Simple Multithreading
	Slide 6: Latency vs Throughput
	Slide 7: MT Implementations: Similarities
	Slide 8: MT Implementations: Differences
	Slide 9: The Standard Multithreading Picture
	Slide 10: Coarse-Grain Multithreading (CGMT)
	Slide 11: CGMT
	Slide 12: Fine-Grain Multithreading (FGMT)
	Slide 13: Fine-Grain Multithreading (FGMT)
	Slide 14: Fine-Grain Multithreading
	Slide 15: Vertical and Horizontal Under-Utilization
	Slide 16: Simultaneous Multithreading (SMT)
	Slide 17: Simultaneous Multithreading (SMT)
	Slide 18: SMT Resource Partitioning
	Slide 19: Static & Dynamic Resource Partitioning
	Slide 20: Multithreading Issues
	Slide 21: Subtleties Of Sharing Soft State
	Slide 22: Necessity Of Sharing Soft State
	Slide 23: Costs Of Sharing Soft State
	Slide 24: Multithreading vs. Multicore
	Slide 28: Multithreading Summary

