CSE 560
Computer Systems Architecture

Multiprocessors

Flynn’s Taxonomy

« Proposed by Michael Flynn in 1966
« SISD - single instruction, single data
« Traditional uniprocessor
« SIMD - single instruction, multiple data
» Execute the same instruction on many data elements
« Vector machines, graphics engines
« MIMD — multiple instruction, multiple data
« Each processor executes its own instructions
» Multicores are all built this way
» SPMD - single program, multiple data (extension
proposed by Frederica Darema)
» MIMD machine, each node is executing the same code
« MISD — multiple instruction, single data
« Systolic array

Shared-Memory Multiprocessors

Conceptual model

» The shared-memory abstraction

« Familiar and feels natural to programmers

« Life would be easy if systems actually looked like this...

Memory

Distributed-Memory Multiprocessors

...but systems actually look more like this
« Memory is physically distributed
« Previously covered common address space and cache coherence
« Scales to about 10s to 100 processors
» When we want to scale up to 1000s (or millions) of cores
 Separate address spaces
« Arbitrary interconnect — custom, LAN, WAN
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Connect Processors via Network

Cluster approach
» Off-the-shelf processors (each of which is a multicore)
» Connect using off-the-shelf networking technology
+ Leverages existing components - inexpensive to design
+ Cloud service providers do this a lot!

» Amazon Web Services (AWS)

* Microsoft Azure
+ Scales up very easily

+ 1000s of nodes
+ Long latency to move data

« Traverse network for one

cache line? Nope!

Programming Models

» The interconnect is a Local-Area Network (LAN)
» TCP/IP message delivery
« IP addresses
+ Network handles routing, etc.
+ Socket-based programming
« Higher-level abstractions
« Distributed shared memory
» Works but performs poorly — latency again
« Map-Reduce
» Hadoop, etc.
+ Streaming data
» Apache Storm, etc.
« Explicit message passing (more later)




Virtualization

Sharing the processor cores

» VM technology allows multiple virtual machines to run on a
single physical machine

« Hypervisor schedules VMs onto physical cores
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Cluster Interconnect

Ethernet Switches

« 1sttier are top-of-rack (ToR) switches

+ Additional tiers connect racks, top tier talks to outside world
* Lots of redundant paths

Can we fix latency issue?
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Cluster approach
» TCP/IP network technology is dominant
« But is it needed? Or just readily available?

Custom Interconnect

Known topology, trusted environment
» Routing is easier
. Security is easier

Interconnect Topologies
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* Mesh
 Torus (wraparound mesh)

» Low-overhead message
delivery

+ Routing is straightforward

» Move along row to
destination column

» Move along column to
destination row

+ Forwarding can be fast

« Old-school: store-and-
forward

» Modern: cut-through
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Cray Dragonfly
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Custom Design for Supercomputers
- Big applications with lots of parallelism
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Cray Dragonfly Network

Mesh with additional links
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Back to Standardized Interconnect

Issue with Ethernet is latency
» Protocol processing at endpoints

« Store-and-forward routing /
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Infiniband Network
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+ Standardized technology
« Multiple vendors
» Equipment works together
» Competition
+ Not trying to be the “Internet”

» Focus on low latency interconnect needs
+ Minimize protocol processing
« E.g., easier routing, simpler security model
+ Fast forwarding
« Cut-through packet delivery
» Remote Direct Memory Access (RDMA)
« Supports single-ended messaging

Programming Paradigm

Message Passing
» MPI (Message Passing Interface) is de facto standard
» Used by almost all supercomputing applications

Basic Message Passing

Processor A Processor B
memory memory
network
K- |
send(data) receive{data)

15

More MPI
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MPI capabilities beyond just send() and rcve()
* One-sided communication: get() and put()

+ Collective operations
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Flynn’s Taxonomy

« Proposed by Michael Flynn in 1966
« SISD - single instruction, single data
« Traditional uniprocessor
» SIMD - single instruction, multiple data
» Execute the same instruction on many data elements
 Vector machines, graphics engines
+ MIMD — multiple instruction, multiple data
« Each processor executes its own instructions
+ Multicores are all built this way
* SPMD - single program, multiple data (extension
proposed by Frederica Darema)
» MIMD machine, each node is executing the same code
« MISD — multiple instruction, single data
« Systolic array
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SIMD Instructions
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Graphics Engines

Heterogeneous Multiprocessor

» Many processing elements (PE), many threads per PE

« Collections of threads execute in lock-step (SIMD-like)
« Hide latency to memory by switching threads

Streaming Streaming
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Flynn’s Taxonomy

Proposed by Michael Flynn in 1966
SISD - single instruction, single data
« Traditional uniprocessor
SIMD - single instruction, multiple data
« Execute the same instruction on many data elements
« Vector machines, graphics engines
+ MIMD — multiple instruction, multiple data
« Each processor executes its own instructions
» Multicores are all built this way
» SPMD - single program, multiple data (extension
proposed by Frederica Darema)
« MIMD machine, each node is executing the same code
« MISD — multiple instruction, single data
« Systolic array
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Systolic Arrays

H.T. Kung, “"Why Systolic Architectures?,” Computer, 1982
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Systolic Arrays

Purpose-built design for specific problem
» Custom PE, replicated many times
» E.g., array of MA (multiply-accumulate) units for FIR filter

MAS MA4 MA3 MA2 MAL MAD

- RNA folding [Jacob et al. 2010]
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INSTEAD OF:
MEMORY 5 MILLION
OPERATIONS
100ns PER SECOND
AT MOST
WE HAVE:
30 MOPS
POSSIBLE
100ns
THE SYSTOLIC ARRAY
Figure 1. Basic principle of a systolic system. 22
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Figure 1. TPU Block Diagram. The main computation part is the
yellow Matrix Multiply unit in the upper right hand comner. Its inputs
are the blue Weight FIFO and the blue Unified Buffer (UB) and its
output is the blue Accumulators (Acc). The yellow Activation Unit
performs the nonlinear functions on the Acc, which go to the UB B



Tensor Processing Unit
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Figure 4. Systolic data flow of the Matrix Multiply Unit. Software

has the illusion that each 256B input is read at once, and they instantly

update one location of each of 256 accumulator RAMs

Flynn’s Taxonomy
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Proposed by Michael Flynn in 1966
SISD - single instruction, single data
« Traditional uniprocessor
SIMD - single instruction, multiple data
» Execute the same instruction on many data elements
« Vector machines, graphics engines
MIMD — multiple instruction, multiple data
« Each processor executes its own instructions
» Multicores are all built this way
» SPMD - single program, multiple data (extension
proposed by Frederica Darema)
» MIMD machine, each node is executing the same code
MISD — multiple instruction, single data
« Systolic array
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