CSE 560
Computer Systems Architecture

Multiprocessors

Flynn’s Taxonomy

« Proposed by Michael Flynn in 1966
« SISD - single instruction, single data
« Traditional uniprocessor
« SIMD - single instruction, multiple data
» Execute the same instruction on many data elements
« Vector machines, graphics engines
« MIMD — multiple instruction, multiple data
« Each processor executes its own instructions
» Multicores are all built this way
» SPMD - single program, multiple data (extension
proposed by Frederica Darema)
» MIMD machine, each node is executing the same code
« MISD — multiple instruction, single data
« Systolic array

Shared-Memory Multiprocessors

Conceptual model

» The shared-memory abstraction

« Familiar and feels natural to programmers

« Life would be easy if systems actually looked like this...

Memory

Distributed-Memory Multiprocessors

...but systems actually look more like this
« Memory is physically distributed
« Previously covered common address space and cache coherence
« Scales to about 10s to 100 processors
» When we want to scale up to 1000s (or millions) of cores
 Separate address spaces
« Arbitrary interconnect — custom, LAN, WAN

- L
A (] 3 [v] ER o] B[]

|Router/interface| |Router/interface| |Routerlinterface| |R0uter/interface|

Connect Processors via Network

Cluster approach
» Off-the-shelf processors (each of which is a multicore)
» Connect using off-the-shelf networking technology
+ Leverages existing components - inexpensive to design
+ Cloud service providers do this a lot!

» Amazon Web Services (AWS)

* Microsoft Azure
+ Scales up very easily

+ 1000s of nodes
+ Long latency to move data

« Traverse network for one

cache line? Nope!

Programming Models

» The interconnect is a Local-Area Network (LAN)
» TCP/IP message delivery
« IP addresses
+ Network handles routing, etc.
+ Socket-based programming
« Higher-level abstractions
« Distributed shared memory
» Works but performs poorly — latency again
« Map-Reduce
» Hadoop, etc.
+ Streaming data
» Apache Storm, etc.
« Explicit message passing (more later)

Virtualization

Sharing the processor cores

» VM technology allows multiple virtual machines to run on a
single physical machine

« Hypervisor schedules VMs onto physical cores

M [Aee]
IIIIIIEW
(wmm) / - VMWare
VM] [)

| Virtucl Machine Maritor (VMM) / Hypervisor —UML

L e e
:

“ete.

Cluster Interconnect

Ethernet Switches

« 1sttier are top-of-rack (ToR) switches

+ Additional tiers connect racks, top tier talks to outside world
* Lots of redundant paths

Can we fix latency issue?

[[]: switch : Server
39 tier [:] [:J 1] [] D [:] |:] E] l
oouer o M DDDL/}AD
14t tier 5 1] 2 i
8

Cluster approach
» TCP/IP network technology is dominant
« But is it needed? Or just readily available?

Custom Interconnect

Known topology, trusted environment
» Routing is easier
. Security is easier

Interconnect Topologies

10

* Mesh
 Torus (wraparound mesh)

» Low-overhead message
delivery

+ Routing is straightforward

» Move along row to
destination column

» Move along column to
destination row

+ Forwarding can be fast

« Old-school: store-and-
forward

» Modern: cut-through

L
%
'
o

L]

U i

BRI
3
st e el

2D Torus

Cray Dragonfly

11

Custom Design for Supercomputers
- Big applications with lots of parallelism

ns—
o2 N
mn“""‘m

per S
R Natwor

12

Cray Dragonfly Network

Mesh with additional links

= =\

\Gh te
AW

~ by cables (black
/ links) to form a two-
cabinet group

N
16 Aries routers

connected by chassis
backplane (green links)

\ \ \
4 nodes
connected to
each Aries |
router '

Back to Standardized Interconnect

Issue with Ethernet is latency
» Protocol processing at endpoints

« Store-and-forward routing /

13

Infiniband Network

14

+ Standardized technology
« Multiple vendors
» Equipment works together
» Competition
+ Not trying to be the “Internet”

» Focus on low latency interconnect needs
+ Minimize protocol processing
« E.g., easier routing, simpler security model
+ Fast forwarding
« Cut-through packet delivery
» Remote Direct Memory Access (RDMA)
« Supports single-ended messaging

Programming Paradigm

Message Passing
» MPI (Message Passing Interface) is de facto standard
» Used by almost all supercomputing applications

Basic Message Passing

Processor A Processor B
memory memory
network
K- |
send(data) receive{data)

15

More MPI

16

MPI capabilities beyond just send() and rcve()
* One-sided communication: get() and put()

+ Collective operations
LT XTI

G e
\W/ \@/

broadcast scatter

@000 Q000

/ /
o \é/

gather reduction

Flynn’s Taxonomy

« Proposed by Michael Flynn in 1966
« SISD - single instruction, single data
« Traditional uniprocessor
» SIMD - single instruction, multiple data
» Execute the same instruction on many data elements
 Vector machines, graphics engines
+ MIMD — multiple instruction, multiple data
« Each processor executes its own instructions
+ Multicores are all built this way
* SPMD - single program, multiple data (extension
proposed by Frederica Darema)
» MIMD machine, each node is executing the same code
« MISD — multiple instruction, single data
« Systolic array

17

18

SIMD Instructions

orc]inar‘_y Cpu SIMD CPU

one 3-bit reqistér holds one mumber

one 3-bit register acts as four 8-bit registers|

R [l 9 2 8 |«
R:[3 3 3 3)
Ry [3

e
Jas

s pro®

8-bit num 8-bit numbers
put [+ [9 [2 T8 | wmput[1 [0 [= [8 | /{
result[3 37 [[¢ vesule [3 127 Jo |24 IF

Operation Count:

Operation Count:
4loads, 4 multiplies, and 4 saves peration Loun

+load, 1 multiply, and 1 save

By Decora at English Wikipedia, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=30547549 19

Graphics Engines

Heterogeneous Multiprocessor

» Many processing elements (PE), many threads per PE

« Collections of threads execute in lock-step (SIMD-like)
« Hide latency to memory by switching threads

Streaming Streaming
m . T, GPU
gr={re el | | | gpfee) el

19

Flynn’s Taxonomy

Proposed by Michael Flynn in 1966
SISD - single instruction, single data
« Traditional uniprocessor
SIMD - single instruction, multiple data
« Execute the same instruction on many data elements
« Vector machines, graphics engines
+ MIMD — multiple instruction, multiple data
« Each processor executes its own instructions
» Multicores are all built this way
» SPMD - single program, multiple data (extension
proposed by Frederica Darema)
« MIMD machine, each node is executing the same code
« MISD — multiple instruction, single data
« Systolic array

5
/1 I
2 ’_ﬁ Global Memory)
20
Systolic Arrays

H.T. Kung, “"Why Systolic Architectures?,” Computer, 1982

21

Systolic Arrays

Purpose-built design for specific problem
» Custom PE, replicated many times
» E.g., array of MA (multiply-accumulate) units for FIR filter

MAS MA4 MA3 MA2 MAL MAD

- RNA folding [Jacob et al. 2010]

23

INSTEAD OF:
MEMORY 5 MILLION
OPERATIONS
100ns PER SECOND
AT MOST
WE HAVE:
30 MOPS
POSSIBLE
100ns
THE SYSTOLIC ARRAY
Figure 1. Basic principle of a systolic system. 22
Tensor Processing Unit
pr— — DOR3 DRAM Chips | |
Home oo s Weight FIFO
& - DOR3-2133 ———C
-— o
=
% 'Y
< (Unifiad " Wt Mattiply
j{ ooy | wutier | sysose G
1ecievs (8 §| 14010 {Loent Date (64K par cyce)
<= 1% = f L Betebon/l [ooie
! ey
(Lo)
[Wormatae pool |
Figure 1. TPU Block Diagram. The main computation part is the
yellow Matrix Multiply unit in the upper right hand comner. Its inputs
are the blue Weight FIFO and the blue Unified Buffer (UB) and its
output is the blue Accumulators (Acc). The yellow Activation Unit
performs the nonlinear functions on the Acc, which go to the UB B

Tensor Processing Unit

<4
-« <«— <«—

T - !

Y

\d

Partial Sums

'
}
|

Figure 4. Systolic data flow of the Matrix Multiply Unit. Software

has the illusion that each 256B input is read at once, and they instantly

update one location of each of 256 accumulator RAMs

Flynn’s Taxonomy

25

Proposed by Michael Flynn in 1966
SISD - single instruction, single data
« Traditional uniprocessor
SIMD - single instruction, multiple data
» Execute the same instruction on many data elements
« Vector machines, graphics engines
MIMD — multiple instruction, multiple data
« Each processor executes its own instructions
» Multicores are all built this way
» SPMD - single program, multiple data (extension
proposed by Frederica Darema)
» MIMD machine, each node is executing the same code
MISD — multiple instruction, single data
« Systolic array

26

	Slide 1: CSE 560 Computer Systems Architecture
	Slide 2: Flynn’s Taxonomy
	Slide 3: Shared-Memory Multiprocessors
	Slide 4: Distributed-Memory Multiprocessors
	Slide 5: Connect Processors via Network
	Slide 6: Programming Models
	Slide 7: Virtualization
	Slide 8: Cluster Interconnect
	Slide 9: Can we fix latency issue?
	Slide 10: Custom Interconnect
	Slide 11: Interconnect Topologies
	Slide 12: Cray Dragonfly
	Slide 13: Cray Dragonfly Network
	Slide 14: Back to Standardized Interconnect
	Slide 15: Infiniband Network
	Slide 16: Programming Paradigm
	Slide 17: More MPI
	Slide 18: Flynn’s Taxonomy
	Slide 19: SIMD Instructions
	Slide 20: Graphics Engines
	Slide 21: Flynn’s Taxonomy
	Slide 22: Systolic Arrays
	Slide 23: Systolic Arrays
	Slide 24: Tensor Processing Unit
	Slide 25: Tensor Processing Unit
	Slide 26: Flynn’s Taxonomy

