
CSE 560
Computer Systems Architecture

Multiprocessors

1

Flynn’s Taxonomy
• Proposed by Michael Flynn in 1966

• SISD – single instruction, single data

• Traditional uniprocessor

• SIMD – single instruction, multiple data

• Execute the same instruction on many data elements

• Vector machines, graphics engines

• MIMD – multiple instruction, multiple data

• Each processor executes its own instructions

• Multicores are all built this way

• SPMD – single program, multiple data (extension
proposed by Frederica Darema)

• MIMD machine, each node is executing the same code

• MISD – multiple instruction, single data

• Systolic array
2

Shared-Memory Multiprocessors

Conceptual model

• The shared-memory abstraction

• Familiar and feels natural to programmers

• Life would be easy if systems actually looked like this…

3

P0 P1 P2 P3

Memory

Distributed-Memory Multiprocessors

…but systems actually look more like this

• Memory is physically distributed

• Previously covered common address space and cache coherence

• Scales to about 10s to 100 processors

• When we want to scale up to 1000s (or millions) of cores

• Separate address spaces

• Arbitrary interconnect – custom, LAN, WAN

4

P0 P1 P2 P3

$ M0

Router/interface

Interconnect

$ M1

Router/interface

$ M2

Router/interface

$ M3

Router/interface

Connect Processors via Network

Cluster approach

• Off-the-shelf processors (each of which is a multicore)

• Connect using off-the-shelf networking technology

• Leverages existing components → inexpensive to design

• Cloud service providers do this a lot!

• Amazon Web Services (AWS)

• Microsoft Azure

• Scales up very easily

• 1000s of nodes

• Long latency to move data

• Traverse network for one

 cache line? Nope!
5

Programming Models

• The interconnect is a Local-Area Network (LAN)

• TCP/IP message delivery

• IP addresses

• Network handles routing, etc.

• Socket-based programming

• Higher-level abstractions

• Distributed shared memory

• Works but performs poorly – latency again

• Map-Reduce

• Hadoop, etc.

• Streaming data

• Apache Storm, etc.

• Explicit message passing (more later)
6

1 2

3 4

5 6

Virtualization

Sharing the processor cores

• VM technology allows multiple virtual machines to run on a
single physical machine

• Hypervisor schedules VMs onto physical cores

7

Cluster Interconnect

Ethernet Switches

• 1st tier are top-of-rack (ToR) switches

• Additional tiers connect racks, top tier talks to outside world

• Lots of redundant paths

8

Can we fix latency issue?

Cluster approach

• TCP/IP network technology is dominant

• But is it needed? Or just readily available?

9

Custom Interconnect

Known topology, trusted environment

• Routing is easier

• Security is easier

10

Custom interconnect

Still
TCP/IP

Interconnect Topologies

• Mesh

• Torus (wraparound mesh)

• Low-overhead message
delivery

• Routing is straightforward

• Move along row to
destination column

• Move along column to
destination row

• Forwarding can be fast

• Old-school: store-and-
forward

• Modern: cut-through
11

Cray Dragonfly

Custom Design for Supercomputers

• Big applications with lots of parallelism

• All tiers in one switch (Aries)

12

7 8

9 10

11 12

Cray Dragonfly Network

Mesh with additional links

13

Back to Standardized Interconnect

Issue with Ethernet is latency

• Protocol processing at endpoints

• Store-and-forward routing

14

Infiniband interconnect

Still
TCP/IP

Infiniband Network

• Standardized technology

• Multiple vendors

• Equipment works together

• Competition

• Not trying to be the “Internet”

• Focus on low latency interconnect needs

• Minimize protocol processing

• E.g., easier routing, simpler security model

• Fast forwarding

• Cut-through packet delivery

• Remote Direct Memory Access (RDMA)

• Supports single-ended messaging
15

Programming Paradigm

Message Passing

• MPI (Message Passing Interface) is de facto standard

• Used by almost all supercomputing applications

16

More MPI

MPI capabilities beyond just send() and rcve()

• One-sided communication: get() and put()

• Collective operations

17

Flynn’s Taxonomy
• Proposed by Michael Flynn in 1966

• SISD – single instruction, single data

• Traditional uniprocessor

• SIMD – single instruction, multiple data

• Execute the same instruction on many data elements

• Vector machines, graphics engines

• MIMD – multiple instruction, multiple data

• Each processor executes its own instructions

• Multicores are all built this way

• SPMD – single program, multiple data (extension
proposed by Frederica Darema)

• MIMD machine, each node is executing the same code

• MISD – multiple instruction, single data

• Systolic array
18

13 14

15 16

17 18

SIMD Instructions

By Decora at English Wikipedia, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=30547549 19

Graphics Engines

Heterogeneous Multiprocessor

• Many processing elements (PE), many threads per PE

• Collections of threads execute in lock-step (SIMD-like)

• Hide latency to memory by switching threads

20

Flynn’s Taxonomy
• Proposed by Michael Flynn in 1966

• SISD – single instruction, single data

• Traditional uniprocessor

• SIMD – single instruction, multiple data

• Execute the same instruction on many data elements

• Vector machines, graphics engines

• MIMD – multiple instruction, multiple data

• Each processor executes its own instructions

• Multicores are all built this way

• SPMD – single program, multiple data (extension
proposed by Frederica Darema)

• MIMD machine, each node is executing the same code

• MISD – multiple instruction, single data

• Systolic array
21

H.T. Kung, “Why Systolic Architectures?,” Computer, 1982

Systolic Arrays

22

Systolic Arrays

23

Purpose-built design for specific problem

• Custom PE, replicated many times

• E.g., array of MA (multiply-accumulate) units for FIR filter

• RNA folding [Jacob et al. 2010]

Tensor Processing Unit

24

19 20

21 22

23 24

Tensor Processing Unit

25

Flynn’s Taxonomy
• Proposed by Michael Flynn in 1966

• SISD – single instruction, single data

• Traditional uniprocessor

• SIMD – single instruction, multiple data

• Execute the same instruction on many data elements

• Vector machines, graphics engines

• MIMD – multiple instruction, multiple data

• Each processor executes its own instructions

• Multicores are all built this way

• SPMD – single program, multiple data (extension
proposed by Frederica Darema)

• MIMD machine, each node is executing the same code

• MISD – multiple instruction, single data

• Systolic array
26

25 26

	Slide 1: CSE 560 Computer Systems Architecture
	Slide 2: Flynn’s Taxonomy
	Slide 3: Shared-Memory Multiprocessors
	Slide 4: Distributed-Memory Multiprocessors
	Slide 5: Connect Processors via Network
	Slide 6: Programming Models
	Slide 7: Virtualization
	Slide 8: Cluster Interconnect
	Slide 9: Can we fix latency issue?
	Slide 10: Custom Interconnect
	Slide 11: Interconnect Topologies
	Slide 12: Cray Dragonfly
	Slide 13: Cray Dragonfly Network
	Slide 14: Back to Standardized Interconnect
	Slide 15: Infiniband Network
	Slide 16: Programming Paradigm
	Slide 17: More MPI
	Slide 18: Flynn’s Taxonomy
	Slide 19: SIMD Instructions
	Slide 20: Graphics Engines
	Slide 21: Flynn’s Taxonomy
	Slide 22: Systolic Arrays
	Slide 23: Systolic Arrays
	Slide 24: Tensor Processing Unit
	Slide 25: Tensor Processing Unit
	Slide 26: Flynn’s Taxonomy

