
“Scalable” Cache Coherence

Part I: bus bandwidth

Replace non-scalable bandwidth substrate (bus)…

…with scalable one (point-to-point network, e.g., mesh)

Part II: processor snooping bandwidth

• Most snoops result in no action

• Replace non-scalable broadcast protocol (spam everyone)…

…with scalable directory protocol (only notify processors that care)

57

I

LdM/StM

Scalable Cache Coherence

• Point-to-point interconnects
• Glueless MP: no need for additional “glue” chips
+ Can be arbitrarily large: 1000’s of processors

• Massively parallel processors (MPPs)
• Only government (DoD) has cache-coherent MPPs…

• Companies have much smaller systems: 32–64 processors
• Scalable multi-processors

• AMD Opteron/Phenom – point-to-point, glueless, broadcast

• Distributed memory: non-uniform memory architecture (NUMA)
• Multicore: on-chip mesh interconnection networks

58

CPU($)

Mem R

CPU($)

Mem R

CPU($)

MemR

CPU($)

MemR

Directory Coherence Protocols

Observe: address space statically partitioned
+ Can easily determine which memory module holds a given line

• That memory module sometimes called “home”
– Can’t easily determine which processors have line in their caches
• Bus-based protocol: broadcast events to all processors/caches

± Simple and fast, but non-scalable
Directories: non-broadcast coherence protocol
• Extend memory to track caching information
• For each physical cache line whose home this is, track:

• Owner: which processor has a dirty copy (i.e., M state)
• Sharers: which processors have clean copies (i.e., S state)

• Processor sends coherence event to home directory
• Home directory only sends events to processors that care

• For multicore w/ shared L3, put directory info in cache tags

59

MSI Directory Protocol
• Processor side

• Directory follows its own protocol (obvious
in principle)

• Similar to bus-based MSI

• Same three states

• Same five actions (keep BR/BW names)

• Minus red arcs/actions

• Events that would not trigger action anyway

+Directory won’t bother you unless you need
to act

60

I

M

S
to

re

S
tM

is
s
,
W

B

Load, Store

S

Store

Load, LdMiss

LdMiss

LdMiss,

StMiss

MSI Directory Protocol

ld by P1 sends BR to directory
• Directory sends BR to P0, P0 sends P1 data, does WB, goes to S

st by P1 sends BW to directory
• Directory sends BW to P0, P0 goes to I

61

Processor 0

0: addi r1,accts→r3

1: ld 0(r3),r4

2: blt r4,r2,done

3: sub r4,r2→r4

4: st r4,0(r3)

Processor 1

0: addi r1,accts→r3

1: ld 0(r3),r4

2: blt r4,r2,done

3: sub r4,r2→r4

4: st r4,0(r3)

–:–:500

S:500 S:0:500

M:400 M:0:500

S:400 S:0,1:400S:400

I: M:1:400M:300

P0 P1 Directory

(stale)

Directory Flip Side: Latency
• Directory protocols

+ Lower bandwidth consumption → more scalable

– Longer latencies

• Two read miss situations

• Unshared: get data from memory

• Snooping: 2 hops (P0→memory→P0)

• Directory: 2 hops (P0→memory→P0)

• Shared or exclusive: get data from other processor (P1)

• Assume cache-to-cache transfer optimization

• Snooping: 2 hops (P0→P1→P0)

– Directory: 3 hops (P0→memory→P1→P0)

• Common, many processors → high probability someone has it

62

P0 P1

Dir

3 hop miss

P0

Dir

2 hop miss

Directory Flip Side: Complexity

• Latency is not the only issue for directories
• Subtle correctness issues as well
• Stem from unordered nature of underlying inter-connect

• Individual requests to single cache must be ordered
• Bus-based snooping: all processors see all requests in same

order
• Ordering automatic

• Point-to-point network: requests may arrive in different orders
• Directory has to enforce ordering explicitly
• Cannot initiate actions on request B…
 ..until all relevant processors complete actions on request A
• Requires directory to collect acks, queue requests, etc.

• Directory protocols
• Obvious in principle
– Complicated in practice

63

Coherence on Real Machines
• Many uniprocessors designed with on-chip snooping logic

• Can be easily combined to form multi-processors

• e.g., Intel Pentium4 Xeon

• And multicore, of course

• Larger scale (directory) systems built from smaller MPs

• e.g., Sun Wildfire, NUMA-Q, IBM Summit

• Some shared memory machines are not cache coherent

• e.g., CRAY-T3D/E

• Shared data is uncachable

• If you want to cache shared data, copy it to private data
section

• Basically, cache coherence implemented in software

• Have to really know what you are doing as a programmer

64

Roadmap Checkpoint

65

• Thread-level parallelism (TLP)

• Shared memory model

• Multiplexed uniprocessor

• Hardware multithreading

• Multiprocessing

• Synchronization

• Lock implementation

• Locking gotchas

• Cache coherence

• Bus-based protocols

• Directory protocols

• Memory consistency models

Mem CPU I/O

System software

AppApp App

CPUCPUCPUCPUCPU

Tricky Shared Memory Examples
• Answer the following questions:

• Initially: all variables zero (that is, x is 0, y is 0, flag is 0, A is 0)

• What value pairs can be read by the two loads? (x, y) pairs:

• (0,0) and (1,1) easy to see

• load x, store 1 → y, load y, store 1 → x gives (0,1)

• Is it possible to get (1,0)?

66

store 1 → y
 store 1 → x

thread 1 thread 2
load x

 load y

Tricky Shared Memory Examples
• Answer the following questions:

• Initially: all variables zero (that is, x is 0, y is 0, flag is 0, A is 0)

• What value pairs can be read by the two loads? (x, y) pairs:

• What value pairs can be read by the two loads? (x, y) pairs:

• What value can be read by “Load A” below?

67

store 1 → y
 store 1 → x

thread 1 thread 2
load x

 load y

store 1 → x
 load y

thread 1 thread 2
store 1 → y

 load x

while(flag == 0) { }
 load A

thread 1 thread 2
store 1 → A
 store 1 → flag

Memory Consistency

• Memory coherence

• Creates globally uniform (consistent) view…

 …of a single memory location (in other words: cache line)

– Not enough

• Cache lines A and B can be individually consistent…

 …but inconsistent with respect to each other

• Memory consistency

• Creates globally uniform (consistent) view…

 …of all memory locations relative to each other

• Who cares? Programmers

– Globally inconsistent memory creates mystifying behavior

68

Hiding Store Miss Latency

• Recall (back from caching unit)

• Hiding store miss latency

• How? Store buffer

• Said it would complicate multiprocessors

• Yes, it does!

69

Write Misses and Store Buffers
Read miss?

• Load can’t go on without the data→must stall

Write miss?

• Technically, no one needs data→why stall?

Store buffer: a small buffer

• Stores put addr/value to write buffer, keep going

• Store buffer writes stores to D$ in the background

• Loads must search store buffer (in addition to D$)

+ Eliminates stalls on write misses (mostly)

– Creates some problems

70

Processor

Cache

WBB

Next-level

cache

SB

Store Buffers & Consistency

Consider the following execution:

• Processor 0’s write to A, misses the cache. Put in store buffer

• Processor 0 keeps going

• Processor 0 write “1” to flag hits, completes

• Processor 1 reads flag… sees the value “1”

• Processor 1 exits loop

• Processor 1 prints “0” for A

Ramification: store buffers can cause “strange” behavior

• How strange depends on lots of things

71

A=flag=0;

Processor 0

A=1;

flag=1;

Processor 1

while (!flag); // spin

print A;

Coherence vs. Consistency

• Intuition says: P1 prints A=1

• Coherence says: absolutely nothing

• P1 can see P0’s write of flag before write of A!!! How?

• P0 has a coalescing store buffer that reorders writes

• Or out-of-order execution

• Or compiler re-orders instructions

• Imagine trying to figure out why this code sometimes “works”
and sometimes doesn’t

• Real systems act in this strange manner

• What is allowed is defined as part of the ISA of the processor

72

A=0 flag=0

Processor 0

A=1;

flag=1;

Processor 1

while (!flag); // spin

print A;

Memory Consistency Models
• Sequential consistency (SC) (MIPS, PA-RISC)

• Formal definition of memory view programmers expect
• Processors see their own loads and stores in program order

+ Provided naturally, even with out-of-order execution

• But also: processors see others’ loads and stores in program order
• And finally: all processors see same global load/store ordering

– Last two conditions not naturally enforced by coherence

• Corresponds to some sequential interleaving of uniprocessor orders
• Indistinguishable from multi-programmed uni-processor

• Processor consistency (PC) (x86, SPARC)
• Allows a in-order store buffer

• Stores can be deferred, but must be put into the cache in order

• Release consistency (RC) (ARM, Itanium, PowerPC)
• Allows an un-ordered store buffer

• Stores can be put into cache in any order

73

Restoring Order

• Sometimes we need ordering (mostly we don’t)
• Prime example: ordering between “lock” and data

• How? insert Fences (memory barriers)
• Special instructions, part of ISA

• Example
• Ensure that loads/stores don’t cross lock acquire/release

operation
acquire

fence

critical section

fence

release

• How do fences work?
• They stall execution until write buffers are empty
• Makes lock acquisition and release slow(er)

• Use synchronization library, don’t write your own

74

Shared Memory Summary

• Synchronization: regulated access to shared data

• Key feature: atomic lock acquisition operation (e.g., t&s)

• Performance optimizations: test-and-test-and-set, queue
locks

• Coherence: consistent view of individual cache lines

• Absolute coherence not needed, relative coherence OK

• VI and MSI protocols, cache-to-cache transfer optimization

• Implementation? snooping, directories

• Consistency: consistent view of all memory locations

• Programmers intuitively expect sequential consistency (SC)

• Global interleaving of individual processor access streams

– Not always naturally provided, may prevent optimizations

• Weaker ordering: consistency only for synchronization points

75

Flynn’s Taxonomy
• Proposed by Michael Flynn in 1966

• SISD – single instruction, single data

• Traditional uniprocessor

• SIMD – single instruction, multiple data

• Execute the same instruction on many data elements

• Vector machines, graphics engines

• MIMD – multiple instruction, multiple data

• Each processor executes its own instructions

• Multicores are all built this way

• SPMD – single program, multiple data (extension
proposed by Frederica Darema)

• MIMD machine, each node is executing the same code

• MISD – multiple instruction, single data

• Systolic array
76

Summary

77

• Thread-level parallelism (TLP)

• Shared memory model

• Multiplexed uniprocessor

• Hardware multithreading

• Multiprocessing

• Synchronization

• Lock implementation

• Locking gotchas

• Cache coherence

• Bus-based protocols

• Directory protocols

• Memory consistency models

Mem CPU I/O

System software

AppApp App

CPUCPUCPUCPUCPU

	Slide 57: “Scalable” Cache Coherence
	Slide 58: Scalable Cache Coherence
	Slide 59: Directory Coherence Protocols
	Slide 60: MSI Directory Protocol
	Slide 61: MSI Directory Protocol
	Slide 62: Directory Flip Side: Latency
	Slide 63: Directory Flip Side: Complexity
	Slide 64: Coherence on Real Machines
	Slide 65: Roadmap Checkpoint
	Slide 66: Tricky Shared Memory Examples
	Slide 67: Tricky Shared Memory Examples
	Slide 68: Memory Consistency
	Slide 69: Hiding Store Miss Latency
	Slide 70: Write Misses and Store Buffers
	Slide 71: Store Buffers & Consistency
	Slide 72: Coherence vs. Consistency
	Slide 73: Memory Consistency Models
	Slide 74: Restoring Order
	Slide 75: Shared Memory Summary
	Slide 76: Flynn’s Taxonomy
	Slide 77: Summary

