
Roadmap Checkpoint

38

• Thread-level parallelism (TLP)

• Shared memory model

• Multiplexed uniprocessor

• Hardware multithreading

• Multiprocessing

• Synchronization

• Lock implementation

• Locking gotchas

• Cache coherence

• Bus-based protocols

• Directory protocols

• Memory consistency models

Mem CPU I/O

System software

AppApp App

CPUCPUCPUCPUCPU

Recall: Simplest Multiprocessor

• What if we don’t want to share the L1 caches?

• Bandwidth and latency issue

• Solution: use per-processor (“private”) caches

• Coordinate them with a Cache Coherence Protocol

39

PC

I$

Regfile

PC

Regfile

D$

Shared-Memory Multiprocessors

Conceptual model

• The shared-memory abstraction

• Familiar and feels natural to programmers

• Life would be easy if systems actually looked like this…

40

P0 P1 P2 P3

Memory

Shared-Memory Multiprocessors

…but systems actually look more like this

• Processors have caches

• Memory may be physically distributed

• Arbitrary interconnect

41

P0 P1 P2 P3

$ M0

Router/interface

Interconnect

$ M1

Router/interface

$ M2

Router/interface

$ M3

Router/interface

Revisiting Our Motivating Example

• Two $100 withdrawals from account #241 at two ATMs

• Each transaction maps to thread on different processor

• Track accts[241].bal (address is in $r3)

42

Processor 0

0: addi r1,accts→r3

1: ld 0(r3),r4

2: blt r4,r2,done

3: sub r4,r2→r4

4: st r4,0(r3)

Processor 1

0: addi r1,accts→r3

1: ld 0(r3),r4

2: blt r4,r2,done

3: sub r4,r2→r4

4: st r4,0(r3)

critical section

(locks not shown)

critical section

(locks not shown)

CPU0

$ Mem
CPU1

$

No-Cache, No-Problem

• Scenario I: processors have no caches

• No problem

43

Processor 0

0: addi r1,accts→r3

1: ld 0(r3),r4

2: blt r4,r2,done

3: sub r4,r2→r4

4: st r4,0(r3)

Processor 1

0: addi r1,accts→r3

1: ld 0(r3),r4

2: blt r4,r2,done

3: sub r4,r2→r4

4: st r4,0(r3)

$500

$500

$400

$400

$300

CPU0

$ Mem
CPU1

$

Cache Incoherence

• Scenario II(a): processors have write-back caches

• Potentially 3 copies of accts[241].bal: memory, p0$, p1$

• Can get incoherent (inconsistent)

44

Processor 0

0: addi r1,accts→r3

1: ld 0(r3),r4

2: blt r4,r2,done

3: sub r4,r2→r4

4: st r4,0(r3)

Processor 1

0: addi r1,accts→r3

1: ld 0(r3),r4

2: blt r4,r2,done

3: sub r4,r2→r4

4: st r4,0(r3)

$500

$500 $500

$400

$400

$500

$500$500

$400 $500$400

CPU0

$ Mem
CPU1

$

Write-Through Doesn’t Fix It

• Scenario II(b): processors have write-through caches

• This time only 2 (different) copies of accts[241].bal

• No problem? What if another withdrawal happens on processor 0?

45

Processor 0

0: addi r1,accts→r3

1: ld 0(r3),r4

2: blt r4,r2,done

3: sub r4,r2→r4

4: st r4,0(r3)

Processor 1

0: addi r1,accts→r3

1: ld 0(r3),r4

2: blt r4,r2,done

3: sub r4,r2→r4

4: st r4,0(r3)

$500

$500 $500

$400 $400

$400 $400$400

$400 $300$300

CPU0

$ Mem
CPU1

$

What To Do?
• No caches?

– Slow

• Make shared data uncachable?
– Faster, but still too slow
• Entire accts database is technically “shared”

• Flush all other caches on writes to shared data?
• May as well not have caches

• Hardware cache coherence
• Rough goal: all caches have same data at all times
+ Minimal flushing, maximum caching → best

performance

46

Bus-based Multiprocessor
Simple multiprocessors use a bus
• All processors see all requests at the same time, same order
Memory
• Single memory module, -or-
• Banked memory module

47

P0 P1 P2 P3

$

M0

Bus

$

M1

$

M2

$

M3

Hardware Cache Coherence

• Coherence

• all copies have same data at all times

• Coherence controller:

• Examines bus traffic (addresses and data)

• Executes coherence protocol

• What to do with local copy when you see
different things happening on bus

• Three processor-initiated events

• Ld: load

• St: store

• WB: write-back

• Two remote-initiated events

• LdMiss: read miss from another processor

• StMiss: write miss from another processor

48

CPU

D
$
 d

a
ta

D
$
 t

a
g
s

CC

bus

VI (MI) Coherence Protocol

• VI (valid-invalid) protocol: aka MI*

• Two states (per block in cache)

• V (valid): have block

• I (invalid): don’t have block

+Can implement with valid bit

• Protocol diagram (left)

• If you load/store a block: transition to V

• If anyone else wants to read/write block:

• Give it up: transition to I state

• Write-back if your own copy is dirty

• This is an invalidate protocol

• Update protocol: copy data, don’t invalidate

• Sounds good, but wastes a lot of bandwidth

49

I

V

L
o
a
d
,

S
to

re

L
d
M

is
s
,
S

tM
is

s
,
W

B

Load, Store

LdMiss,

StMiss

* M=modified, comes later

VI Protocol (Write-Back Cache)

ld by processor 1 generates an “other load miss” event (LdMiss)

• processor 0 responds by sending its dirty copy, transitioning to I

50

Processor 0

0: addi r1,accts→r3

1: ld 0(r3),r4

2: blt r4,r2,done

3: sub r4,r2→r4

4: st r4,0(r3)

Processor 1

0: addi r1,accts→r3

1: ld 0(r3),r4

2: blt r4,r2,done

3: sub r4,r2→r4

4: st r4,0(r3)

500

V:500 500

V:400 500

I: 400V:400

400V:300

CPU0 MemCPU1

VI → MSI
• VI protocol is inefficient

– Only one cached copy allowed in entire
system

– Multiple copies can’t exist even if read-only

• Not a problem in example

• Big problem in reality

• MSI (modified-shared-invalid)

• Fixes problem: splits “V” state into two
states

• M (modified): local dirty copy

• S (shared): local clean copy

• Allows either

• Multiple read-only copies (S-state) --OR--

• Single read/write copy (M-state)

51

I

M

S
to

re

S
tM

is
s
,
W

B

Load, Store

S

Store

Load, LdMiss

LdMiss

LdMiss,

StMiss

MSI Protocol (Write-Back Cache)

ld by processor 1 generates a “other load miss” event (LdMiss)

• Processor 0 responds by sending its dirty copy, transitioning to S

st by processor 1 generates a “other store miss” event (StMiss)

• Processor 0 responds by transitioning to I

52

Processor 0

0: addi r1,accts→r3

1: ld 0(r3),r4

2: blt r4,r2,done

3: sub r4,r2→r4

4: st r4,0(r3)

Processor 1

0: addi r1,accts→r3

1: ld 0(r3),r4

2: blt r4,r2,done

3: sub r4,r2→r4

4: st r4,0(r3)

500

S:500 500

M:400 500

S:400 400S:400

I: 400M:300

CPU0 MemCPU1

Cache Coherence and Cache Misses
• Coherence introduces two new kinds of cache misses

• Upgrade miss

• On stores to read-only blocks

• Delay to acquire write permission to read-only block

• Coherence miss

• Miss to a block evicted by another processor’s requests

• Making the cache larger…

• Doesn’t reduce these type of misses

• As cache grows large, these sorts of misses dominate

• False sharing

• Two or more processors sharing parts of the same block

• But not the same bytes within that block (no actual sharing)

• Creates pathological “ping-pong” behavior

• Careful data placement may help, but is difficult

53

MSI → MESI: Exclusive Clean Protocol

Most modern protocols also include
E (exclusive) state

• “I have the only cached copy,
and it’s a clean copy”

• Why is this state useful?

Load transitions to E if no other
processors is caching the block,
otherwise S

54

I

M

S
to

re

S
tM

is
s
,
W

B

Load, Store

E

Store

Load

Load
S

Load

StMiss

Exclusive Clean Protocol Optimization

55

Processor 0

0: addi r1,accts,r3

1: ld 0(r3)→r4

2: blt r4,r2,done

3: sub r4,r2→r4

4: st r4,0(r3)

Processor 1

0: addi r1,accts→r3

1: ld 0(r3),r4

2: blt r4,r2,done

3: sub r4,r2→r4

4: st r4,0(r3)

500

E:500 500

M:400 500

S:400 400S:400

I: 400M:300

CPU0 MemCPU1

(No miss)

Snooping Bandwidth Scaling Problems
• Coherence events generated on…

• L2 misses (and writebacks) – actually last level cache misses

• Problem#1: N2 bus traffic

• All N processors send their misses to all N-1 other processors

• Assume: 2 IPC, 2 GHz clock, 0.01 misses/insn per processor

• 0.01 misses/insn x 2 insn/cycle x 2 cycle/ns x 64 B blocks

= 2.56 GB/s… per processor

• With 16 processors, that’s 40 GB/s! With 128 that’s 320 GB/s!!

• You can use multiple buses… but that hinders global ordering

• Problem#2: N2 processor snooping bandwidth
• 0.01 events/insn x 2 insn/cycle = 0.02 events/cycle per

processor
• 16 processors: 0.32 bus-side tag lookups per cycle

• Add 1 extra port to cache tags? Okay

• 128 processors: 2.56 tag lookups per cycle! 3 extra tag ports?

56

	Slide 38: Roadmap Checkpoint
	Slide 39: Recall: Simplest Multiprocessor
	Slide 40: Shared-Memory Multiprocessors
	Slide 41: Shared-Memory Multiprocessors
	Slide 42: Revisiting Our Motivating Example
	Slide 43: No-Cache, No-Problem
	Slide 44: Cache Incoherence
	Slide 45: Write-Through Doesn’t Fix It
	Slide 46: What To Do?
	Slide 47: Bus-based Multiprocessor
	Slide 48: Hardware Cache Coherence
	Slide 49: VI (MI) Coherence Protocol
	Slide 50: VI Protocol (Write-Back Cache)
	Slide 51: VI  MSI
	Slide 52: MSI Protocol (Write-Back Cache)
	Slide 53: Cache Coherence and Cache Misses
	Slide 54: MSI  MESI: Exclusive Clean Protocol
	Slide 55: Exclusive Clean Protocol Optimization
	Slide 56: Snooping Bandwidth Scaling Problems

