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• Thread-level parallelism (TLP)

• Shared memory model

• Multiplexed uniprocessor

• Hardware multithreading

• Multiprocessing

• Synchronization

• Lock implementation

• Locking gotchas

• Cache coherence

• Bus-based protocols

• Directory protocols

• Memory consistency models
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Recall: Simplest Multiprocessor

• What if we don’t want to share the L1 caches?

• Bandwidth and latency issue

• Solution: use per-processor (“private”) caches

• Coordinate them with a Cache Coherence Protocol
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Shared-Memory Multiprocessors

Conceptual model

• The shared-memory abstraction

• Familiar and feels natural to programmers

• Life would be easy if systems actually looked like this…
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Shared-Memory Multiprocessors

…but systems actually look more like this

• Processors have caches

• Memory may be physically distributed

• Arbitrary interconnect
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Revisiting Our Motivating Example

• Two $100 withdrawals from account #241 at two ATMs

• Each transaction maps to thread on different processor

• Track accts[241].bal (address is in $r3)
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Processor 0

0: addi r1,accts→r3

1: ld 0(r3),r4

2: blt r4,r2,done

3: sub r4,r2→r4

4: st r4,0(r3)

Processor 1

0: addi r1,accts→r3

1: ld 0(r3),r4

2: blt r4,r2,done

3: sub r4,r2→r4

4: st r4,0(r3)

critical section

(locks not shown)

critical section

(locks not shown)
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$ Mem
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No-Cache, No-Problem

• Scenario I: processors have no caches

• No problem
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Processor 0

0: addi r1,accts→r3

1: ld 0(r3),r4

2: blt r4,r2,done

3: sub r4,r2→r4

4: st r4,0(r3)

Processor 1

0: addi r1,accts→r3

1: ld 0(r3),r4

2: blt r4,r2,done

3: sub r4,r2→r4

4: st r4,0(r3)

$500

$500

$400

$400

$300

CPU0
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Cache Incoherence

• Scenario II(a): processors have write-back caches 

• Potentially 3 copies of accts[241].bal: memory, p0$, p1$

• Can get incoherent (inconsistent)
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Processor 0

0: addi r1,accts→r3

1: ld 0(r3),r4

2: blt r4,r2,done

3: sub r4,r2→r4

4: st r4,0(r3)

Processor 1

0: addi r1,accts→r3

1: ld 0(r3),r4

2: blt r4,r2,done

3: sub r4,r2→r4

4: st r4,0(r3)
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Write-Through Doesn’t Fix It

• Scenario II(b): processors have write-through caches 

• This time only 2 (different) copies of accts[241].bal

• No problem? What if another withdrawal happens on processor 0?
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Processor 0

0: addi r1,accts→r3

1: ld 0(r3),r4

2: blt r4,r2,done

3: sub r4,r2→r4

4: st r4,0(r3)

Processor 1

0: addi r1,accts→r3

1: ld 0(r3),r4

2: blt r4,r2,done

3: sub r4,r2→r4

4: st r4,0(r3)
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What To Do?
• No caches? 

– Slow

• Make shared data uncachable? 
– Faster, but still too slow
• Entire accts database is technically “shared”

• Flush all other caches on writes to shared data?
• May as well not have caches

• Hardware cache coherence
• Rough goal: all caches have same data at all times
+ Minimal flushing, maximum caching → best 

performance
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Bus-based Multiprocessor
Simple multiprocessors use a bus
• All processors see all requests at the same time, same order
Memory
• Single memory module, -or-
• Banked memory module
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Hardware Cache Coherence

• Coherence 

• all copies have same data at all times

• Coherence controller:

• Examines bus traffic (addresses and data)

• Executes coherence protocol

• What to do with local copy when you see 
different things happening on bus

• Three processor-initiated events

• Ld: load     

• St: store    

• WB: write-back

• Two remote-initiated events

• LdMiss: read miss from another processor

• StMiss: write miss from another processor
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VI (MI) Coherence Protocol

• VI (valid-invalid) protocol: aka MI*

• Two states (per block in cache)

• V (valid): have block

• I (invalid): don’t have block

+Can implement with valid bit

• Protocol diagram (left)

• If you load/store a block: transition to V

• If anyone else wants to read/write block:

• Give it up: transition to I state

• Write-back if your own copy is dirty

• This is an invalidate protocol

• Update protocol: copy data, don’t invalidate

• Sounds good, but wastes a lot of bandwidth
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VI Protocol (Write-Back Cache)

ld by processor 1 generates an “other load miss” event (LdMiss)

• processor 0 responds by sending its dirty copy, transitioning to I
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Processor 0

0: addi r1,accts→r3

1: ld 0(r3),r4

2: blt r4,r2,done

3: sub r4,r2→r4

4: st r4,0(r3)

Processor 1

0: addi r1,accts→r3

1: ld 0(r3),r4

2: blt r4,r2,done

3: sub r4,r2→r4

4: st r4,0(r3)

500
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V:400 500

I: 400V:400
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VI → MSI
• VI protocol is inefficient

– Only one cached copy allowed in entire 
system

– Multiple copies can’t exist even if read-only

• Not a problem in example

• Big problem in reality

• MSI (modified-shared-invalid)

• Fixes problem: splits “V” state into two 
states

• M (modified): local dirty copy

• S (shared): local clean copy

• Allows either

• Multiple read-only copies (S-state)  --OR--

• Single read/write copy (M-state)
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MSI Protocol (Write-Back Cache)

ld by processor 1 generates a “other load miss” event (LdMiss)

• Processor 0 responds by sending its dirty copy, transitioning to S

st by processor 1 generates a “other store miss” event (StMiss)

• Processor 0 responds by transitioning to I
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Processor 0

0: addi r1,accts→r3

1: ld 0(r3),r4

2: blt r4,r2,done

3: sub r4,r2→r4

4: st r4,0(r3)

Processor 1

0: addi r1,accts→r3

1: ld 0(r3),r4

2: blt r4,r2,done

3: sub r4,r2→r4

4: st r4,0(r3)

500

S:500 500

M:400 500

S:400 400S:400

I:     400M:300
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Cache Coherence and Cache Misses
• Coherence introduces two new kinds of cache misses

• Upgrade miss 

• On stores to read-only blocks

• Delay to acquire write permission to read-only block

• Coherence miss

• Miss to a block evicted by another processor’s requests

• Making the cache larger…

• Doesn’t reduce these type of misses

• As cache grows large, these sorts of misses dominate

• False sharing

• Two or more processors sharing parts of the same block

• But not the same bytes within that block (no actual sharing)

• Creates pathological “ping-pong” behavior

• Careful data placement may help, but is difficult
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MSI → MESI: Exclusive Clean Protocol 

Most modern protocols also include 
E (exclusive) state

• “I have the only cached copy, 
and it’s a clean copy”

• Why is this state useful?

Load transitions to E if no other 
processors is caching the block, 
otherwise S
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Exclusive Clean Protocol Optimization

55

Processor 0

0: addi r1,accts,r3

1: ld 0(r3)→r4

2: blt r4,r2,done

3: sub r4,r2→r4

4: st r4,0(r3)

Processor 1

0: addi r1,accts→r3

1: ld 0(r3),r4

2: blt r4,r2,done

3: sub r4,r2→r4

4: st r4,0(r3)
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(No miss)



Snooping Bandwidth Scaling Problems
• Coherence events generated on…

• L2 misses (and writebacks) – actually last level cache misses

• Problem#1: N2 bus traffic

• All N processors send their misses to all N-1 other processors

• Assume: 2 IPC, 2 GHz clock, 0.01 misses/insn per processor

• 0.01 misses/insn x 2 insn/cycle x 2 cycle/ns x 64 B blocks 

= 2.56 GB/s… per processor

• With 16 processors, that’s 40 GB/s!  With 128 that’s 320 GB/s!!

• You can use multiple buses… but that hinders global ordering

• Problem#2: N2 processor snooping bandwidth
• 0.01 events/insn x 2 insn/cycle = 0.02 events/cycle per 

processor
• 16 processors: 0.32 bus-side tag lookups per cycle

• Add 1 extra port to cache tags? Okay

• 128 processors: 2.56 tag lookups per cycle!  3 extra tag ports?
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