
CSE 560
Computer Systems Architecture

Multicores
(Shared Memory Multiprocessors)

1

Multiplying Performance
• A single processor can only be so fast

• Limited clock frequency
• Limited instruction-level parallelism
• Limited cache hierarchy

• What if we need even more computing power?
• Use multiple processors!
• But how?

• High-end example: Sun Ultra Enterprise 25k
• 72 UltraSPARC IV+ processors, 1.5GHz
• 1024 GBs of memory
• Niche: large database servers
• $$$

2

Multicore: Mainstream Multiprocessors

• Multicore chips
• IBM Power5

• Two 2+GHz PowerPC
cores

• Shared 1.5 MB L2, L3 tags
• AMD Quad Phenom

• Four 2+ GHz cores
• Per-core 512KB L2 cache
• Shared 2MB L3 cache

• Intel Core i7 Quad
• Four cores, private L2s
• Shared 6 MB L3

• Sun Niagara
• 8 cores, each 4-way

threaded
• Shared 2MB L2, shared FP
• For servers, not desktop 3

1.5MB L2

L3 tags

Core 1 Core 2

Why multicore? What else would

you do with 1 billion transistors?

Application Domains for Multiprocessors
• Scientific computing/supercomputing

• Examples: weather simulation, aerodynamics, protein folding

• Large grids, integrating changes over time

• Each processor computes for a part of the grid

• Server workloads

• Example: airline reservation database

• Many concurrent updates, searches, lookups, queries

• Processors handle different requests

• Media workloads

• Processors compress/decompress different parts of
image/frames

• Desktop workloads…

• Gaming workloads…

But software must be written to expose parallelism

4

Mem

This Unit: Shared Memory Multiprocessors

• Thread-level parallelism (TLP)

• Shared memory model

• Multiplexed uniprocessor

• Hardware multithreading

• Multiprocessing

• Synchronization

• Lock implementation

• Locking gotchas

• Cache coherence

• Bus-based protocols

• Directory protocols

• Memory consistency models
5

CPU I/O

System software

AppApp App

CPUCPUCPUCPUCPU

Identifying Parallelism

Consider
for (I = 0; I < 10000; I++)
 C[I] = A[I] * B[I];

or
struct acct_t { int balance; };
struct acct_t accounts[MAX_ACCT]; // current balances

struct trans_t { int id; int amount; };
struct trans_t transactions[MAX_TRANS]; // debit amounts

for (i = 0; i < MAX_TRANS; i++) {
 int id = transactions[i].id;
 int amount = transactions[i].amount;
 if (accounts[id].balance >= amount)
 {
 accounts[id].balance -= amount;
 }
}

Can we do these in parallel?

6

1 2

3 4

5 6

Example: Parallelizing Matrix Multiply

How to parallelize matrix multiply?
• Replace outer “for” loop with “parallel_for”
• Support by many parallel programming environments

Implementation: give each of N processors loop iterations
int start = (100/N) * my_id();

for (I = start; I < start + 100/N; I++)

 for (J = 0; J < 100; J++)

 for (K = 0; K < 100; K++)

 C[I][J] += A[I][K] * B[K][J];

Each processor runs copy of loop above
• Library provides my_id() function

7

B

X=

C A

for (I = 0; I < 100; I++)
 for (J = 0; J < 100; J++)

 for (K = 0; K < 100; K++)

 C[I][J] += A[I][K] * B[K][J];

Example: Bank Accounts

• Example of Thread-level parallelism (TLP)
• Collection of asynchronous tasks: not started and stopped together

• Data shared “loosely” (sometimes yes, mostly no), dynamically

• Example: database/web server (each query is a thread)
• accts is shared, can’t register allocate even if it were scalar
• id and amt are private variables, register allocated to r1, r2

• Running example

8

struct acct_t { int bal; };

shared struct acct_t accts[MAX_ACCT];

int id, amt;

if (accts[id].bal >= amt)

{

 accts[id].bal -= amt;

}

r1 = id

r2 = amt

r3 = entry addr

r4 = bal

0: addi r1,accts→r3

1: ld 0(r3),r4

2: blt r4,r2,done

3: sub r4,r2→r4

4: st r4,0(r3)

An Example Execution

• Two $100 withdrawals from account #241 at two ATMs

• Each transaction executed on different processor

• Track accts[241].bal (address is in r3)

9

Thread 0

0: addi r1,accts→r3

1: ld 0(r3),r4

2: blt r4,r2,done

3: sub r4,r2→r4

4: st r4,0(r3)

Thread 1

0: addi r1,accts→r3

1: ld 0(r3),r4

2: blt r4,r2,done

3: sub r4,r2→r4

4: st r4,0(r3)

Mem

500

400

300

T
im

e
Roadmap Checkpoint

10

• Thread-level parallelism (TLP)

• Shared memory model

• Multiplexed uniprocessor

• Hardware multithreading

• Multiprocessing

• Synchronization

• Lock implementation

• Locking gotchas

• Cache coherence

• Bus-based protocols

• Directory protocols

• Memory consistency models

Mem CPU I/O

System software

AppApp App

CPUCPUCPUCPUCPU

First, Uniprocessor Concurrency
• Software “thread”

• Independent flow of execution

• Context state: PC, registers

• Threads generally share the same memory space

• “Process” like a thread, but different memory space

• Java has thread support built in, C/C++ supports P-threads
library

• Generally, system software (the OS) manages threads

• “Thread scheduling”, “context switching”

• All threads share the one processor

• Hardware timer interrupt occasionally triggers O.S.

• Quickly swapping threads gives illusion of concurrent execution

• Much more in an operating systems course

11

Multithreaded Programming Model
• Programmer explicitly creates multiple threads

• All loads & stores to a single shared memory space

• Each thread has a private stack frame for local variables

• A “thread switch” can occur at any time

• Pre-emptive multithreading by OS

• Common uses:

• Handling user interaction (GUI programming)

• Handling I/O latency (send network message, wait for
response)

• Expressing parallel work via Thread-Level Parallelism (TLP)

12

7 8

9 10

11 12

Shared Memory Implementations
• Multiplexed uniprocessor

• Runtime system and/or OS occasionally pre-empt & swap
threads

• Interleaved, but no parallelism

• Hardware multithreading (previous unit)
• Tolerate pipeline latencies, higher efficiency
• Same interleaved shared-memory model

• Multiprocessing
• Multiply execution resources, higher peak performance
• Same interleaved shared-memory model
• Foreshadowing: allow private caches, further disentangle

cores

• All support the shared memory programming model

13

Simplest Multiprocessor

• Replicate entire processor pipeline!

• Instead of replicating just register file & PC

• Exception: share caches (we’ll address this bottleneck later)

• Same “shared memory” or “multithreaded” model

• Loads and stores from two processors are interleaved

• Advantages/disadvantages over hardware multithreading?

14

PC

I$

Regfile

PC

Regfile

D$

Shared Memory Issues
• Three in particular, not unrelated to each other

• Synchronization

• How to regulate access to shared data?

• How to implement critical sections?

• Cache coherence

• How to make writes to one cache “show up” in others?

• Memory consistency model

• How to keep programmer sane & let hw optimize?

• How to reconcile shared memory with store buffers?

15

Roadmap Checkpoint

16

• Thread-level parallelism (TLP)

• Shared memory model

• Multiplexed uniprocessor

• Hardware multihreading

• Multiprocessing

• Synchronization

• Lock implementation

• Locking gotchas

• Cache coherence

• Bus-based protocols

• Directory protocols

• Memory consistency models

Mem CPU I/O

System software

AppApp App

CPUCPUCPUCPUCPU

A Problem Execution

• Problem: wrong account balance! Why?

• Solution: synchronize access to account balance

17

Thread 0

0: addi r1,accts→r3

1: ld 0(r3),r4

2: blt r4,r2,done

3: sub r4,r2→r4

<<< Interrupt >>>

4: st r4,0(r3)

Thread 1

0: addi r1,accts→r3

1: ld 0(r3),r4

2: blt r4,r2,done

3: sub r4,r2→r4

4: st r4,0(r3)

Mem

500

400

T
im

e

400

Synchronization:
Synchronization: a key issue for shared memory
• Regulate access to shared data (mutual exclusion)

• Low-level primitive: lock (higher-level: “semaphore” or “mutex”)
• Operations: acquire(lock)and release(lock)

• Region between acquire and release is a critical section
• Must interleave acquire and release

• Interfering acquire will block

• Another option: Barrier synchronization
• Blocks until all threads reach barrier, used at end of “parallel_for”

18

struct acct_t { int bal; };

shared struct acct_t accts[MAX_ACCT];

shared int lock;

int id, amt;

acquire(lock);

if (accts[id].bal >= amt) {

 accts[id].bal -= amt;

}

release(lock);

critical section

13 14

15 16

17 18

A Synchronized Execution

Fixed, but how do
we implement
acquire & release?

19

Thread 0

 call acquire(lock)

0: addi r1,accts→r3

1: ld 0(r3),r4

2: blt r4,r2,done

3: sub r4,r2→r4

<<< Interrupt >>>

4: st r4,0(r3)

 call release(lock)

Thread 1

 call acquire(lock)

 <<< Interrupt >>>

 (still in acquire,

 which now returns)

0: addi r1,accts→r3

1: ld 0(r3),r4

2: blt r4,r2,done

3: sub r4,r2→r4

4: st r4,0(r3)

 call release(lock)

Mem

500

400

T
im

e

300

Spins!

Strawman Lock

Spin lock: software lock implementation

• acquire(lock): while (lock != 0) {}

 lock = 1;

“Spin” while lock is 1, wait for it to turn 0

A0: ld 0(&lock),r6

A1: bnez r6,A0

A2: addi r6,1→r6

A3: st r6,0(&lock)

• release(lock): lock = 0;

R0: st r0,0(&lock) // r0 holds 0

20

(Incorrect)

Strawman Lock

• Spin lock makes intuitive sense, but doesn’t actually work

• Loads/stores of two acquire sequences can be interleaved

• Lock acquire sequence also not atomic

• Same problem as before!

• Note, release is trivially atomic

21

Thread 0

A0: ld 0(&lock),r6

A1: bnez r6,#A0

A2: addi r6,1→r6

A3: st r6,0(&lock)

CRITICAL_SECTION

Thread 1

A0: ld r6,0(&lock)

A1: bnez r6,#A0

A2: addi r6,1→r6

A3: st r6,0(&lock)

CRITICAL_SECTION

Mem

0

1

T
im

e

1

(Incorrect) A Correct Implementation: SYSCALL Lock

Implement lock in a SYSCALL

• Only kernel can control interleaving by disabling interrupts

+ Works…

– Large system call overhead

– But not in hardware multithreading or a multiprocessor…

22

ACQUIRE_LOCK:

A1: disable_interrupts

A2: ld r6,0(&lock)

A3: bnez r6,#A0

A4: addi r6,1→r6

A5: st r6,0(&lock)

A6: enable_interrupts

A7: return

atomic

Better Spin Lock: Use Atomic Swap
• ISA provides an atomic lock acquisition instruction

• Example: atomic swap
swap r1,0(&lock)

• Atomically executes:

• New acquire sequence
(value of r1 is 1)

 A0: swap r1,0(&lock)

 A1: bnez r1,A0

• If lock was initially busy (1), doesn’t change it, keep looping
• If lock was initially free (0), acquires it (sets it to 1), break loop

• Ensures lock held by at most one thread
• Other variants: exchange, compare-and-swap,

test-and-set (t&s), or fetch-and-add

23

mov r1->r2

ld r1,0(&lock)

st r2,0(&lock)

Atomic Update/Swap Implementation

• How is atomic swap implemented?

• Need to ensure no intervening memory operations

• Requires blocking access by other threads temporarily (yuck)

• How to pipeline it?

• Both a load and a store (yuck)

• Not very RISC-like

• Some ISAs provide a “load-link” and “store-conditional” insn pair

24

PC

I$

Regfile

PC

Regfile

D$

19 20

21 22

23 24

RISC Test-And-Set

• swap: a load and store in one insn is not very “RISC”

• Broken up into micro-ops, but then how is it made
atomic?

• ll/sc: load-locked / store-conditional

• Atomic load/store pair
ll r1,0(&lock)

// potentially other insns

sc r2,0(&lock)

• On ll, processor remembers address…

• …And looks for writes by other processors

• If write is detected, next sc to same address is annulled

– Sets failure condition

25

Lock Correctness

+ Lock actually works…

• Thread 1 keeps spinning

• Sometimes called a “test-and-set lock”

• Named after the common “test-and-set” atomic
instruction

26

Thread 0

A0: swap r1,0(&lock)

A1: bnez r1,#A0

CRITICAL_SECTION

Thread 1

A0: swap r1,0(&lock)

A1: bnez r1,#A0

A0: swap r1,0(&lock)

A1: bnez r1,#A0

“Test-and-Set” Lock Performance

– …but performs poorly

• Consider 3 processors rather than 2

• P2 (not shown) has the lock and is in the critical section

• But what are P0 and P1 doing in the meantime?

• Loops of swap, each of which includes a st

– Repeated stores by multiple processors costly (more in a bit)

– Generating a ton of useless interconnect traffic

27

Thread 0

A0: swap r1,0(&lock)

A1: bnez r1,#A0

A0: swap r1,0(&lock)

A1: bnez r1,#A0

Thread 1

A0: swap r1,0(&lock)

A1: bnez r1,#A0

A0: swap r1,0(&lock)

A1: bnez r1,#A0

Test-and-Test-and-Set Locks
Solution: test-and-test-and-set locks

• New acquire sequence
A0: ld r1,0(&lock)

A1: bnez r1,A0

A2: addi r1,1→r1

A3: swap r1,0(&lock)

A4: bnez r1,A0

• Within each loop iteration, before doing a swap

• Spin doing a simple test (ld) to see if lock value has
changed

• Only do a swap (st) if lock is actually free

• Processors can spin on a busy lock locally (in their own cache)

+ Less unnecessary interconnect traffic

• Note: test-and-test-and-set is not a new instruction!

• Just different software

28

Queue Locks
• Test-and-test-and-set locks can still perform poorly

• If lock is contended for by many processors

• Lock release by one processor, creates “free-for-all” by others

– Interconnect gets swamped with t&s requests

• Software queue lock

• Each waiting processor spins on a different location (a queue)

• When lock is released by one processor...

• Only the next processors sees its location go “unlocked”

• Others continue spinning locally, unaware lock was released

• Effectively, passes lock from one processor to the next, in order

+ Greatly reduced network traffic (no mad rush for the lock)

+ Fairness (lock acquired in FIFO order)

– Higher overhead in case of no contention (more instructions)

– Poor performance if one thread gets swapped out

29

Programming With Locks Is Tricky
• Multicore processors are the way of the foreseeable future

• thread-level parallelism anointed as parallelism model of choice

• Just one problem…

• Writing lock-based multi-threaded programs is tricky!

• More precisely:

• Writing programs that are correct is “easy” (not really)

• Writing programs that are highly parallel is “easy” (not really)

– Writing programs that are both correct and parallel is difficult
• And that’s the whole point, unfortunately

• Selecting the “right” kind of lock for performance

• Spin lock, queue lock, ticket lock, read/writer lock, etc.

• Locking granularity issues

30

25 26

27 28

29 30

Goldibear and the 3 Locks
• Coarse-grain locks: correct, but slow

• one lock for entire database

+ Easy to make correct: no chance for unintended interference

– Limits parallelism: no two critical sections can proceed in parallel

• Fine-grain locks: parallel, but difficult

• multiple locks, one per record

+ Fast: critical sections (to different records) can proceed in parallel

– Difficult to make correct: easy to make mistakes

• Multiple locks: just right? (sorry, no fairytale ending)

• acct-to-acct transfer: must acquire both id_from, id_to locks

• Simultaneous transfers 241 → 37 and 37 → 241

• Deadlock: circular wait for shared resources

• Solution: Always acquire multiple locks in same order

• Just another thing to keep in mind when programming

31

More Lock Madness

• What if…

• Some actions (e.g., deposits, transfers) require 1 or 2 locks…

• …and others (e.g., prepare statements) require all of them?

• Can these proceed in parallel?

• What if…

• There are locks for global variables (e.g., operation id
counter)?

• When should operations grab this lock?

• What if… what if… what if…

Lock-based programming is difficult…

 …wait, it gets worse

32

And To Make It Worse…

• Acquiring locks is expensive…

• By definition requires a slow atomic instructions

• Specifically, acquiring write permissions to the lock

• Ordering constraints (see soon) make it even slower

• …and 99% of the time un-necessary

• Most concurrent actions don’t actually share data

– You paying to acquire the lock(s) for no reason

• Fixing these problem is an area of active research

• One proposed solution “Transactional Memory”

33

Research: Transactional Memory (TM)

Transactional Memory

+ Programming simplicity of coarse-grain locks

+ Higher concurrency (parallelism) of fine-grain locks

• Critical sections only serialized if data is actually shared

+ No lock acquisition overhead

• Hottest thing since sliced bread (or was a few years ago)

• No fewer than eight research projects:

• Brown, Stanford, MIT, Wisconsin, Texas, Rochester,
Intel, Penn

34

Transactional Memory: The Big Idea

• Big idea I: no locks, just shared data

• “Look ma, no locks”

• Big idea II: optimistic (speculative) concurrency

• Execute critical section speculatively, abort on conflicts

• Better to beg for forgiveness than to ask for permission

• Read set: set of shared addresses critical section reads

• Example: accts[37].bal, accts[241].bal

• Write set: set of shared addresses critical section writes

• Example: accts[37].bal, accts[241].bal

35

Transactional Memory: Begin
begin_transaction

• Take a local register checkpoint

• Begin locally tracking read set (remember addresses you read)

• See if anyone else is trying to write it

• Locally buffer all of your writes (invisible to other processors)

+ Local actions only: no lock acquire

36

struct acct_t { int bal; };

shared struct acct_t accts[MAX_ACCT];

int id_from,id_to,amt;

begin_transaction();

if (accts[id_from].bal >= amt) {

 accts[id_from].bal -= amt;

 accts[id_to].bal += amt; }

end_transaction();

31 32

33 34

35 36

Transactional Memory: End

end_transaction

• Check read set: is data you read still valid (i.e., no writes to any)

• Yes? Commit transactions: commit writes

• No? Abort transaction: restore checkpoint

37

struct acct_t { int bal; };

shared struct acct_t accts[MAX_ACCT];

int id_from,id_to,amt;

begin_transaction();

if (accts[id_from].bal >= amt) {

 accts[id_from].bal -= amt;

 accts[id_to].bal += amt; }

end_transaction();

37

	Slide 1: CSE 560 Computer Systems Architecture
	Slide 2: Multiplying Performance
	Slide 3: Multicore: Mainstream Multiprocessors
	Slide 4: Application Domains for Multiprocessors
	Slide 5: This Unit: Shared Memory Multiprocessors
	Slide 6: Identifying Parallelism
	Slide 7: Example: Parallelizing Matrix Multiply
	Slide 8: Example: Bank Accounts
	Slide 9: An Example Execution
	Slide 10: Roadmap Checkpoint
	Slide 11: First, Uniprocessor Concurrency
	Slide 12: Multithreaded Programming Model
	Slide 13: Shared Memory Implementations
	Slide 14: Simplest Multiprocessor
	Slide 15: Shared Memory Issues
	Slide 16: Roadmap Checkpoint
	Slide 17: A Problem Execution
	Slide 18: Synchronization:
	Slide 19: A Synchronized Execution
	Slide 20: Strawman Lock
	Slide 21: Strawman Lock
	Slide 22: A Correct Implementation: SYSCALL Lock
	Slide 23: Better Spin Lock: Use Atomic Swap
	Slide 24: Atomic Update/Swap Implementation
	Slide 25: RISC Test-And-Set
	Slide 26: Lock Correctness
	Slide 27: “Test-and-Set” Lock Performance
	Slide 28: Test-and-Test-and-Set Locks
	Slide 29: Queue Locks
	Slide 30: Programming With Locks Is Tricky
	Slide 31: Goldibear and the 3 Locks
	Slide 32: More Lock Madness
	Slide 33: And To Make It Worse…
	Slide 34: Research: Transactional Memory (TM)
	Slide 35: Transactional Memory: The Big Idea
	Slide 36: Transactional Memory: Begin
	Slide 37: Transactional Memory: End

