
CSE 560
Computer Systems Architecture

Introduction

1

Roger

Chamberlain

Michael Hall

Administrative Stuff
• Instructor: Michael Hall

• Office – Green Hall 3155 Email – mhall24@wustl.edu

• Office Hours – Mon and Wed, 3 pm to 4 pm

• I am available after class if requested.
• TAs: Zaid Ahmed, TBD

• Office Hours – TBD

• Office hours for CSE 560M and CSE 362M are combined this semester.
• Prof. Roger Chamberlain

• Office – McKelvey 1053

• Office Hours – Tue and Thu, 4 pm to 5 pm
• Content questions only

• Please use Piazza over email for asking questions

• Emails get lost in the pile, Piazza posts don’t
• Public post for general questions, private if needed

• Webpage: https://classes.engineering.wustl.edu/cse560m/

• Optional Text: J.-L. Baer, Microprocessor Architecture: From Simple
Pipelines to Chip Multiprocessors, Cambridge University Press, 2010

2

Class Logistics
• Lectures

• Lectures in Green Hall L0120 – MW 5:30pm-6:50pm

• Recording available soon after the lecture is complete

• My office hours

• Either in-person or via Zoom (send me a note)

• I want to be approachable. Feel free to stop by during
office hours for anything you need in this class.

• TA office hours

• Still TBD

• Assignments

• Mostly simulation work – using Linux systems

• Typically due on Fridays (submission on Canvas)

• One reading assignment (pick and read a conference
paper to go deeper into a topic)

3

Grading Logistics
• Three elements

• Practice problems – approx. once per week

• Assignments – typically simulation experiments

• Two exams – equal coverage, no comprehensive final

• Practice problems

• Solutions posted about one week after problems are posted

• No impact on grades, but they are practice for exams

• Assignments

• 5 during the course of the semester

• Exams

• Timed in-class exam

• Grading:

• Assignments 40%

• Exams – Oct 16, Dec 4 30% each

4

What is Computer Architecture?

“Computer Architecture is the science and art of selecting

and interconnecting hardware components to create

computers that meet functional, performance and cost goals.”

 - Old WWW Computer Architecture Page

An analogy to architecture of buildings…

5

What is Computer Architecture?

6

Plans

The role of a building architect:

Materials

Steel

Concrete

Brick

Wood

Glass Goals

Function

Cost

Safety

Ease of Construction

Energy Efficiency

Fast Build Time

Aesthetics

Buildings

Houses

Offices

Apartments

Stadiums

Museums

Design

Construction

1 2

3 4

5 6

What is Computer Architecture?

7

Plans

The role of a computer architect:

Technology

Logic Gates

SRAM

DRAM

Circuit Techniques

Packaging

Magnetic Storage

Flash Memory

Goals

Function

Performance

Reliability

Cost/Manufacturability

Energy Efficiency

Time to Market

Computer

Desktop

Servers

PDAs

Mobile Phones

Supercomputers

Game Consoles

Embedded

Design

Manufacturing

Important Differences…
• Age of discipline: 60 years (vs. 5,000 years)

• Automated mass production
• Advances magnified over millions of chips

• Boot-strapping effect
• Better computers help design next generation
When Seymour Cray was told that Apple had just purchased a

Cray computer that would be used in designing the next
Macintosh, he thought for a minute, and replied that that
seemed reasonable, since he was using a Macintosh to
design the next Cray.

• Rate of change
• Technology, Applications, Goals changing quickly

8

Survey Time

Which of the following statements is true?

A: If you can verify that a chip works correctly, you can
be sure it will continue to work correctly in the future.

B: Chip manufacturing today has much better yield (of
working chips) than it did decades ago.

C: Building reliable (correctly working) chips today is
easier than it was decades ago.

D: It costs ~$300,000,000 to build a fabrication plant.

E: If you have an idea that can make a CPU run at a
higher frequency, you should definitely implement it
(i.e., it’s always a good idea).

9

Survey Time

Which of the following statements is true?

A: If you can verify that a chip works correctly, you can
be sure it will continue to work correctly in the future.

B: Chip manufacturing today has much better yield (of
working chips) than it did decades ago.

C: Building reliable (correctly working) chips today is
easier than it was decades ago.

D: It costs ~$300,000,000 to build a fabrication plant.

E: If you have an idea that can make a CPU run at a
higher frequency, you should definitely implement it.

10
Bunch of fab shots

Old-school Transistors → Old-school Computers

11

Vacuum Tubes

(Older-school)

Electric Transistors

Modern Transistor

12

IBM SOI Technology

From slides © Krste Asanovic, MIT

7 8

9 10

11 12

Intel Fab 11x project, Submicron Manufacturing Facility, Rio

Rancho, New Mexico: Aug 28, 2000

Building a Fab Building a Fab

Building a Fab
Inside a Fab

Inside a Fab Inside a Fab

13 14

15 16

17 18

Inside a Fab Inside a Fab

Gordon Moore with a Wafer
Integrated Circuit

Design Goals (1)
• Functional

• Correctness – harder than software

• What functions should it support?

• Reliable

• Does it continue to perform correctly?

• Hard fault vs. transient fault

• Desktop vs. server vs. space probe reliability

• High performance

• “Fast” — only meaningful in the context of set of tasks

• Not just GHz – truck vs. sports car analogy

• Impossible: fastest possible design for all programs

23

Design Goals (2)
• Low cost: engineer’s dime/fool’s dollar

• Per unit manufacturing cost (wafer cost)

• Cost of making first chip after design (mask cost)

• Design cost (huge design teams, why? Two reasons…)

• Low power/energy – “the new performance”

• Energy in (battery life, cost of electricity)

• Energy out (cooling and related costs)

• Challenge: balancing these goals

• Balance constantly changing

• Focus for us: Performance

24

19 20

21 22

23 24

Shaping Force: Applications/Domains

Another shaping force: applications (usage and context)

Different domains → different needs → different designs

• Scientific: weather prediction, genome sequencing

• 1st computing application domain: ballistics tables

• Need: large memory, heavy-duty floating point

• Examples: Cray XC, IBM BlueGene

Making a comeback → anything that works on lots of data

• Commercial: database/web serving, e-commerce, Google

• Need: data movement, high memory + I/O bandwidth

• E.g., Intel Xeon, AMD Opteron

25

More Applications/Domains
• Desktop: home office, multimedia, games

• Need: integer, memory b/w, integrated graphics/network?
• Examples: Intel Core 2, Core i7, AMD Athlon, PowerPC G5

• Mobile: laptops, mobile phones
• Need: low power, integer performance, integrated

wireless
• Laptops: Intel Core 2 Mobile, Atom, AMD Turion
• Examples: ARM chips by Samsung and others, Intel Atom

• Embedded: microcontrollers in automobiles, door knobs
• Need: low power, low cost
• Examples: ARM chips, dedicated digital signal processors

(DSPs)
• Over 1 billion ARM cores sold in 2006 (at least one per

phone)

27

Application Specific Designs

• This class mostly about general-purpose CPUs

• Processor that can do anything, run a full OS, etc.

• E.g., Intel Core i7, AMD Opteron, IBM Power, ARM

• In contrast to application-specific chips

• Or ASICs (Application specific integrated circuits)

• Implement critical domain-specific functionality in hardware

• Examples: video encoding, cryptography

• General rules

- Hardware is less flexible than software

+ Hardware more effective (speed, power, cost) than software

+ Domain specific more “parallel” than general purpose

• But general mainstream processors becoming more parallel!

• Trend: from specific to general (for a specific domain)

28

Revolution I: The Microprocessor

• Microprocessor revolution: 16-bit processor on 1 chip!

• 1970s, ~25K transistors

• Performance advantages: fewer slow chip-crossings

• Cost advantages: one “stamped-out” component

• Out with the old

• Microprocessor-based systems replace supercomputers,
“mainframes”, “minicomputers”, etc.

• In with the new

• Desktops, CD/DVD players, laptops, game consoles,
set-top boxes, cell phones, digital camera, ipods, GPS…

29

First Microprocessor

Intel 4004 (1971)

• Application: calculators

• Technology: 10 m PMOS

• 2300 transistors

• 13 mm2

• 108 kHz

• 12 Volts

• 4-bit data

• Single-cycle datapath

30

Pinnacle of Single-Core Microprocessors

Intel Pentium4 (2003)
• Application: desktop/server
• Technology: 0.09 m CMOS (1/100X)

• 55M transistors (20,000X)
• 101 mm2 (10X)
• 3.4 GHz (10,000X)
• 1.2 Volts (1/10X)

• 32/64-bit data (16X)
• 22-stage pipelined datapath

• 4 instructions per cycle (superscalar)
• Two levels of on-chip cache
• data-parallel (SIMD) instructions, hyper-threading

31

25 27

28 29

30 31

32

Transistor Counts: Bad Graph

33

Transistor Counts: Good Graph

Source: wgsimon
(wikipedia user)

What to do with all these transistors?

First things first: expressiveness

• Widen the datapath (4004: 4 bits → Pentium4: 64 bits)

• More powerful instructions

• To amortize overhead of fetch and decode

• To simplify programming (done by hand then)

34

Revolution II: Implicit parallelism

Extract implicit instruction-level parallelism (ILP)

• Hardware parallelizes, software is oblivious

Round 1:

• Pipelining → increased clock frequency

• Caches: became necessary as frequencies increased

• Integrated floating-point

Round 2:

• Deeper pipelines and branch speculation

• Multiple issue (superscalar)

• Dynamic scheduling (out-of-order execution)

35

Relatively Recent Multicore Processor

Intel Core i7 (2009)
• Application: desktop/server

 • Technology: 45nm (1/2x)

 • 774M transistors (12x)
• 296 mm2 (3x)
• 3.2 GHz to 3.6 GHz (~1x)

 • 0.7 to 1.4 Volts (~1x)

 • 128-bit data (2x)
• 14-stage pipelined datapath (0.5x)
• 4 instructions per cycle (~1x)
• Three levels of on-chip cache
• data-parallel vector (SIMD) instructions, hyperthreading

 • Four-core multicore (4x)

36

Revolution III: Explicit Parallelism

Support explicit data & thread level parallelism
• HW provides parallel resources, SW specifies usage
• Why? Diminishing returns on ILP

Round 1: Vector instructions…, Intel’s SSE
• One instruction → 4 parallel multiplies

Round 2: Support for multi-threaded programs
• Coherent caches, hardware synchronization primitives

Round 3: Support for multiple concurrent threads on chip
• Single-core multi-threading → multi-core

Round 4: highly parallel Graphics processing units (GPUs)
• Converging with general-purpose processors (CPUs)?
• AMD bought ATI, Intel making GPUs

37

32 33

34 35

36 37

Constant Change

38

Technology

Logic Gates

SRAM

DRAM

Circuit Techniques

Packaging

Magnetic Storage

Flash Memory

Applications/Domains

Desktop

Servers

PDAs

Mobile Phones

Supercomputers

Game Consoles

EmbeddedConstraints

Function

Performance

Reliability

Cost/Manufacturability

Energy Efficiency

Time to Market

Technology Disruptions

Classic examples:

• The transistor

• Microprocessor

More recent examples:

• Multicore processors

• Flash-based solid-state storage

Near-term potentially disruptive technologies:

• Phase-change memory (non-volatile memory)

• Chip stacking (also called 3D die stacking)

Disruptive “end-of-scaling”

• “If something can’t go on forever, it must stop eventually”

• Can we continue to shrink transistors for ever?

• Even if more transistors, not getting as energy efficient as fast

39

Pervasive Idea: Abstraction and Layering

• Abstraction: divide complex systems into objects with:

• Interface: for the common folk

• Implementation: “black box” for the specialists

• E.g., car, only mechanics understand implementation

• Layering

• Implement X using interface of layer just below

• Ignore lower layers (sometimes helps)

• Inertia: a dark side of layering

• Interfaces become stagnant (“standards”)

– Getting layers to cooperate (Intel & Microsoft)

• “Company X now making product Y”

• Opacity: hard to reason about performance across layers

40

Abstraction, Layering, and Computers

• Computer architecture

• Define ISA to facilitate software implementation layers

• This course mostly about computer organization

• Design Processor, Memory, I/O to implement ISA

• Touch on compilers & OS (N+1), circuits (N-1) as well

41

Instruction Set Architecture (ISA)

Processor Memory

Circuits, Devices, Materials

I/O

Operating System, Device Drivers

Application Application Application

Hardware

Software

Why Study Computer Architecture?
• Understand where computers are going

• Future capabilities drive the (computing) world
• Real impact: better computers make more things possible

• Get a (design or research) hardware job
• Intel, AMD, IBM, ARM, Apple, NVIDIA, NEC, Samsung

• Get a (design or research) software job
• Best software designers understand hardware
• Need to understand hardware to write high quality

software

44

Course Goals

• Understand “big ideas” in computer architecture

• Including spectre and meltdown security lapses!

• Be a better scientist: this is a great scientific playground

• Good & bad engineering

• Experimental evaluation/analysis (“science” in CS)
• Computer performance and metrics

• Quantitative data and experiments

• Experimental design & Results presentation

• Get your geek on: think/speak like a computer architect

• Possibly whether you want to or not ☺

45

38 39

40 41

44 45

	Slide 1: CSE 560 Computer Systems Architecture
	Slide 2: Administrative Stuff
	Slide 3: Class Logistics
	Slide 4: Grading Logistics
	Slide 5: What is Computer Architecture?
	Slide 6: What is Computer Architecture?
	Slide 7: What is Computer Architecture?
	Slide 8: Important Differences…
	Slide 9: Survey Time
	Slide 10: Survey Time
	Slide 11: Old-school Transistors  Old-school Computers
	Slide 12: Modern Transistor
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Inside a Fab
	Slide 21: Gordon Moore with a Wafer
	Slide 22: Integrated Circuit
	Slide 23: Design Goals (1)
	Slide 24: Design Goals (2)
	Slide 25: Shaping Force: Applications/Domains
	Slide 27: More Applications/Domains
	Slide 28: Application Specific Designs
	Slide 29: Revolution I: The Microprocessor
	Slide 30: First Microprocessor
	Slide 31: Pinnacle of Single-Core Microprocessors
	Slide 32: Transistor Counts: Bad Graph
	Slide 33: Transistor Counts: Good Graph
	Slide 34: What to do with all these transistors?
	Slide 35: Revolution II: Implicit parallelism
	Slide 36: Relatively Recent Multicore Processor
	Slide 37: Revolution III: Explicit Parallelism
	Slide 38: Constant Change
	Slide 39: Technology Disruptions
	Slide 40: Pervasive Idea: Abstraction and Layering
	Slide 41: Abstraction, Layering, and Computers
	Slide 44: Why Study Computer Architecture?
	Slide 45: Course Goals

