
CSE 560
Computer Systems Architecture

Introduction

1

Roger

Chamberlain

Michael Hall

Administrative Stuff
• Instructor: Michael Hall

• Office – Green Hall 3155 Email – mhall24@wustl.edu
• Office Hours – Mon and Wed, 3 pm to 4 pm
• I am available after class if requested.

• TAs: Zaid Ahmed, TBD
• Office Hours – TBD

• Office hours for CSE 560M and CSE 362M are combined this semester.
• Prof. Roger Chamberlain

• Office – McKelvey 1053
• Office Hours – Tue and Thu, 4 pm to 5 pm
• Content questions only

• Please use Piazza over email for asking questions
• Emails get lost in the pile, Piazza posts don’t
• Public post for general questions, private if needed

• Webpage: https://classes.engineering.wustl.edu/cse560m/
• Optional Text: J.-L. Baer, Microprocessor Architecture: From Simple

Pipelines to Chip Multiprocessors, Cambridge University Press, 2010

2

Class Logistics
• Lectures

• Lectures in Green Hall L0120 – MW 5:30pm-6:50pm

• Recording available soon after the lecture is complete

• My office hours

• Either in-person or via Zoom (send me a note)

• I want to be approachable. Feel free to stop by during
office hours for anything you need in this class.

• TA office hours

• Still TBD

• Assignments

• Mostly simulation work – using Linux systems

• Typically due on Fridays (submission on Canvas)

• One reading assignment (pick and read a conference
paper to go deeper into a topic)

3

Grading Logistics
• Three elements

• Practice problems – approx. once per week

• Assignments – typically simulation experiments

• Two exams – equal coverage, no comprehensive final

• Practice problems

• Solutions posted about one week after problems are posted

• No impact on grades, but they are practice for exams

• Assignments

• 5 during the course of the semester

• Exams

• Timed in-class exam

• Grading:

• Assignments 40%

• Exams – Oct 16, Dec 4 30% each

4

What is Computer Architecture?

“Computer Architecture is the science and art of selecting

and interconnecting hardware components to create

computers that meet functional, performance and cost goals.”

 - Old WWW Computer Architecture Page

An analogy to architecture of buildings…

5

What is Computer Architecture?

6

Plans

The role of a building architect:

Materials

Steel

Concrete

Brick

Wood

Glass Goals

Function

Cost

Safety

Ease of Construction

Energy Efficiency

Fast Build Time

Aesthetics

Buildings

Houses

Offices

Apartments

Stadiums

Museums

Design

Construction

What is Computer Architecture?

7

Plans

The role of a computer architect:

Technology

Logic Gates

SRAM

DRAM

Circuit Techniques

Packaging

Magnetic Storage

Flash Memory

Goals

Function

Performance

Reliability

Cost/Manufacturability

Energy Efficiency

Time to Market

Computer

Desktop

Servers

PDAs

Mobile Phones

Supercomputers

Game Consoles

Embedded

Design

Manufacturing

Important Differences…
• Age of discipline: 60 years (vs. 5,000 years)

• Automated mass production
• Advances magnified over millions of chips

• Boot-strapping effect
• Better computers help design next generation
When Seymour Cray was told that Apple had just purchased a

Cray computer that would be used in designing the next
Macintosh, he thought for a minute, and replied that that
seemed reasonable, since he was using a Macintosh to
design the next Cray.

• Rate of change
• Technology, Applications, Goals changing quickly

8

Survey Time

Which of the following statements is true?

A: If you can verify that a chip works correctly, you can
be sure it will continue to work correctly in the future.

B: Chip manufacturing today has much better yield (of
working chips) than it did decades ago.

C: Building reliable (correctly working) chips today is
easier than it was decades ago.

D: It costs ~$300,000,000 to build a fabrication plant.

E: If you have an idea that can make a CPU run at a
higher frequency, you should definitely implement it
(i.e., it’s always a good idea).

9

Survey Time

Which of the following statements is true?

A: If you can verify that a chip works correctly, you can
be sure it will continue to work correctly in the future.

B: Chip manufacturing today has much better yield (of
working chips) than it did decades ago.

C: Building reliable (correctly working) chips today is
easier than it was decades ago.

D: It costs ~$300,000,000 to build a fabrication plant.

E: If you have an idea that can make a CPU run at a
higher frequency, you should definitely implement it.

10
Bunch of fab shots

Old-school Transistors → Old-school Computers

11

Vacuum Tubes

(Older-school)

Electric Transistors

Modern Transistor

12

IBM SOI Technology

From slides © Krste Asanovic, MIT

Intel Fab 11x project, Submicron Manufacturing Facility, Rio

Rancho, New Mexico: Aug 28, 2000

Building a Fab

Building a Fab

Building a Fab

Inside a Fab

Inside a Fab

Inside a Fab

Inside a Fab

Inside a Fab

Gordon Moore with a Wafer

Integrated Circuit

Design Goals (1)
• Functional

• Correctness – harder than software

• What functions should it support?

• Reliable

• Does it continue to perform correctly?

• Hard fault vs. transient fault

• Desktop vs. server vs. space probe reliability

• High performance

• “Fast” — only meaningful in the context of set of tasks

• Not just GHz – truck vs. sports car analogy

• Impossible: fastest possible design for all programs

23

Design Goals (2)
• Low cost: engineer’s dime/fool’s dollar

• Per unit manufacturing cost (wafer cost)

• Cost of making first chip after design (mask cost)

• Design cost (huge design teams, why? Two reasons…)

• Low power/energy – “the new performance”

• Energy in (battery life, cost of electricity)

• Energy out (cooling and related costs)

• Challenge: balancing these goals

• Balance constantly changing

• Focus for us: Performance

24

Shaping Force: Applications/Domains

Another shaping force: applications (usage and context)

Different domains → different needs → different designs

• Scientific: weather prediction, genome sequencing

• 1st computing application domain: ballistics tables

• Need: large memory, heavy-duty floating point

• Examples: Cray XC, IBM BlueGene

Making a comeback → anything that works on lots of data

• Commercial: database/web serving, e-commerce, Google

• Need: data movement, high memory + I/O bandwidth

• E.g., Intel Xeon, AMD Opteron

25

More Applications/Domains
• Desktop: home office, multimedia, games

• Need: integer, memory b/w, integrated graphics/network?
• Examples: Intel Core 2, Core i7, AMD Athlon, PowerPC G5

• Mobile: laptops, mobile phones
• Need: low power, integer performance, integrated

wireless
• Laptops: Intel Core 2 Mobile, Atom, AMD Turion
• Examples: ARM chips by Samsung and others, Intel Atom

• Embedded: microcontrollers in automobiles, door knobs
• Need: low power, low cost
• Examples: ARM chips, dedicated digital signal processors

(DSPs)
• Over 1 billion ARM cores sold in 2006 (at least one per

phone)

27

Application Specific Designs

• This class mostly about general-purpose CPUs

• Processor that can do anything, run a full OS, etc.

• E.g., Intel Core i7, AMD Opteron, IBM Power, ARM

• In contrast to application-specific chips

• Or ASICs (Application specific integrated circuits)

• Implement critical domain-specific functionality in hardware

• Examples: video encoding, cryptography

• General rules

- Hardware is less flexible than software

+ Hardware more effective (speed, power, cost) than software

+ Domain specific more “parallel” than general purpose

• But general mainstream processors becoming more parallel!

• Trend: from specific to general (for a specific domain)

28

Revolution I: The Microprocessor

• Microprocessor revolution: 16-bit processor on 1 chip!

• 1970s, ~25K transistors

• Performance advantages: fewer slow chip-crossings

• Cost advantages: one “stamped-out” component

• Out with the old

• Microprocessor-based systems replace supercomputers,
“mainframes”, “minicomputers”, etc.

• In with the new

• Desktops, CD/DVD players, laptops, game consoles,
set-top boxes, cell phones, digital camera, ipods, GPS…

29

First Microprocessor

Intel 4004 (1971)

• Application: calculators

• Technology: 10 m PMOS

• 2300 transistors

• 13 mm2

• 108 kHz

• 12 Volts

• 4-bit data

• Single-cycle datapath

30

Pinnacle of Single-Core Microprocessors

Intel Pentium4 (2003)
• Application: desktop/server
• Technology: 0.09 m CMOS (1/100X)

• 55M transistors (20,000X)
• 101 mm2 (10X)
• 3.4 GHz (10,000X)
• 1.2 Volts (1/10X)

• 32/64-bit data (16X)
• 22-stage pipelined datapath
• 4 instructions per cycle (superscalar)
• Two levels of on-chip cache
• data-parallel (SIMD) instructions, hyper-threading

31

32

Transistor Counts: Bad Graph

33

Transistor Counts: Good Graph

Source: wgsimon
(wikipedia user)

What to do with all these transistors?

First things first: expressiveness

• Widen the datapath (4004: 4 bits → Pentium4: 64 bits)

• More powerful instructions

• To amortize overhead of fetch and decode

• To simplify programming (done by hand then)

34

Revolution II: Implicit parallelism

Extract implicit instruction-level parallelism (ILP)

• Hardware parallelizes, software is oblivious

Round 1:

• Pipelining → increased clock frequency

• Caches: became necessary as frequencies increased

• Integrated floating-point

Round 2:

• Deeper pipelines and branch speculation

• Multiple issue (superscalar)

• Dynamic scheduling (out-of-order execution)

35

Relatively Recent Multicore Processor

Intel Core i7 (2009)
• Application: desktop/server

 • Technology: 45nm (1/2x)

 • 774M transistors (12x)
• 296 mm2 (3x)
• 3.2 GHz to 3.6 GHz (~1x)

 • 0.7 to 1.4 Volts (~1x)

 • 128-bit data (2x)
• 14-stage pipelined datapath (0.5x)
• 4 instructions per cycle (~1x)
• Three levels of on-chip cache
• data-parallel vector (SIMD) instructions, hyperthreading

 • Four-core multicore (4x)

36

Revolution III: Explicit Parallelism

Support explicit data & thread level parallelism
• HW provides parallel resources, SW specifies usage
• Why? Diminishing returns on ILP

Round 1: Vector instructions…, Intel’s SSE
• One instruction → 4 parallel multiplies

Round 2: Support for multi-threaded programs
• Coherent caches, hardware synchronization primitives

Round 3: Support for multiple concurrent threads on chip
• Single-core multi-threading → multi-core

Round 4: highly parallel Graphics processing units (GPUs)
• Converging with general-purpose processors (CPUs)?
• AMD bought ATI, Intel making GPUs

37

Constant Change

38

Technology

Logic Gates

SRAM

DRAM

Circuit Techniques

Packaging

Magnetic Storage

Flash Memory

Applications/Domains

Desktop

Servers

PDAs

Mobile Phones

Supercomputers

Game Consoles

EmbeddedConstraints

Function

Performance

Reliability

Cost/Manufacturability

Energy Efficiency

Time to Market

Technology Disruptions

Classic examples:

• The transistor

• Microprocessor

More recent examples:

• Multicore processors

• Flash-based solid-state storage

Near-term potentially disruptive technologies:

• Phase-change memory (non-volatile memory)

• Chip stacking (also called 3D die stacking)

Disruptive “end-of-scaling”

• “If something can’t go on forever, it must stop eventually”

• Can we continue to shrink transistors for ever?

• Even if more transistors, not getting as energy efficient as fast

39

Pervasive Idea: Abstraction and Layering

• Abstraction: divide complex systems into objects with:

• Interface: for the common folk

• Implementation: “black box” for the specialists

• E.g., car, only mechanics understand implementation

• Layering

• Implement X using interface of layer just below

• Ignore lower layers (sometimes helps)

• Inertia: a dark side of layering

• Interfaces become stagnant (“standards”)

– Getting layers to cooperate (Intel & Microsoft)

• “Company X now making product Y”

• Opacity: hard to reason about performance across layers

40

Abstraction, Layering, and Computers

• Computer architecture

• Define ISA to facilitate software implementation layers

• This course mostly about computer organization

• Design Processor, Memory, I/O to implement ISA

• Touch on compilers & OS (N+1), circuits (N-1) as well

41

Instruction Set Architecture (ISA)

Processor Memory

Circuits, Devices, Materials

I/O

Operating System, Device Drivers

Application Application Application

Hardware

Software

Why Study Computer Architecture?
• Understand where computers are going

• Future capabilities drive the (computing) world
• Real impact: better computers make more things possible

• Get a (design or research) hardware job
• Intel, AMD, IBM, ARM, Apple, NVIDIA, NEC, Samsung

• Get a (design or research) software job
• Best software designers understand hardware
• Need to understand hardware to write high quality

software

44

Course Goals

• Understand “big ideas” in computer architecture

• Including spectre and meltdown security lapses!

• Be a better scientist: this is a great scientific playground

• Good & bad engineering

• Experimental evaluation/analysis (“science” in CS)

• Computer performance and metrics

• Quantitative data and experiments

• Experimental design & Results presentation

• Get your geek on: think/speak like a computer architect

• Possibly whether you want to or not ☺

45

	Slide 1: CSE 560 Computer Systems Architecture
	Slide 2: Administrative Stuff
	Slide 3: Class Logistics
	Slide 4: Grading Logistics
	Slide 5: What is Computer Architecture?
	Slide 6: What is Computer Architecture?
	Slide 7: What is Computer Architecture?
	Slide 8: Important Differences…
	Slide 9: Survey Time
	Slide 10: Survey Time
	Slide 11: Old-school Transistors  Old-school Computers
	Slide 12: Modern Transistor
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Inside a Fab
	Slide 21: Gordon Moore with a Wafer
	Slide 22: Integrated Circuit
	Slide 23: Design Goals (1)
	Slide 24: Design Goals (2)
	Slide 25: Shaping Force: Applications/Domains
	Slide 27: More Applications/Domains
	Slide 28: Application Specific Designs
	Slide 29: Revolution I: The Microprocessor
	Slide 30: First Microprocessor
	Slide 31: Pinnacle of Single-Core Microprocessors
	Slide 32: Transistor Counts: Bad Graph
	Slide 33: Transistor Counts: Good Graph
	Slide 34: What to do with all these transistors?
	Slide 35: Revolution II: Implicit parallelism
	Slide 36: Relatively Recent Multicore Processor
	Slide 37: Revolution III: Explicit Parallelism
	Slide 38: Constant Change
	Slide 39: Technology Disruptions
	Slide 40: Pervasive Idea: Abstraction and Layering
	Slide 41: Abstraction, Layering, and Computers
	Slide 44: Why Study Computer Architecture?
	Slide 45: Course Goals

