Aspects of ISAs

Aspects of ISAs

Begin with VonNeumann model

Memory

« Implicit structure of all modern ISAs

 CPU + memory (data & insns)
« Sequential instructions

Control
Unit

Arithmetic

Logic
Unit

Accumulator

A

Format
» Length and encoding
Operand model

N

Input

Output

« Where (other than memory) are operands stored?

Datatypes and operations
Control

The Sequential Model

Implicit model of all modern ISAs

Basic feature: the program counter (PC)

« Defines total order on dynamic instruction
« Next PC is PC++ (except for ctrl insns)

« Order + named storage define computation
Value flows from X to Y via storage A iff:

Fetch PC
Execute
Write Output

Next PC Insn X _ output A

insn'Y input A

Processor logically executes loop at left
 Instruction execution assumed atomic
 Instruction X finishes before insn X+1 starts

More parallel alternatives have been proposed

31

Instruction Length and Format

Length
 Fixed length
Fetch[PC] ¢ Most common is 32 bits
Decode + Simple implementation (next PC often just PC+4)
Read Inputs — Code density: 32 bits to increment a register by 1
=2 |. Variable length
Write Output)
Next PC. + Code density
+ x86 can do increment in one 8-bit instruction

— Complex fetch (where does next instruction
begin?)
« Compromise: two lengths
« E.g., MIPS16 or ARM’s Thumb
Encoding
« A few simple encodings simplify decoder

« X86 decoder one nasty piece of logic
32

Example Instruction Encodings

MIPS
 Fixed length

« 32-bits, 3 formats, simple encoding

R-type | Op(6)

Rs(5) | Rt(5)

Rd(5) | Sh(s) [Func(6)

I-type | Op(6)

Rs(5) | Rt(5)

Immed(16)

J-type | Op(6)

Target(26)

x86

 Variable length encoding (1 to 15 bytes)

Prefix*(1-4) [N OpExt*

ModRM*

SIB* | Disp*(1-4) | Imm*(1-4)

33

Operations and Datatypes

Fetch
Decode
Read Inputs

Execute
Write Output
Next Insn

- Datatypes

« S/W: attribute of data

« H/W: attribute of operation, data is just 0/1's
« All processors support

« 2's complement integer arithmetic/logic
(8/16/32/64-bit)

« IEEE754 floating-point arithmetic (32/64 bit)
« Intel has 80-bit floating-point
« Most processors now support
» “Packed-integer” insns, e.g., MMX
« “Packed-fp” insns, e.g., SSE/SSE2
« For multimedia, more about these later
* Processors no longer (??) support
« Decimal, other fixed-point arithmetic
 Binary-coded decimal (BCD)

34

Where Does Data Live?

- Memory
« Fundamental storage space

Fetch
Decode

Read Inputs . Reg isters
Execute

Write Output Faster than memory, quite handy
NI « Most processors have these too

« Immediates
 Values spelled out as bits in instructions

« Input only

35

How Much Memory? Address Size

» What does “64-bit” in a 64-bit ISA mean?
« Support memory size of 264

« Alternative (wrong) definition: width of calculation
operations

« “Virtual” address size
« Determines size of addressable (usable) memory
« X86 evolution:
- 4-bit (4004), 8-bit (8008), 16-bit (8086), 24-bit (80286),
 32-bit + protected memory (80386)
« 64-bit (AMD’s Opteron & Intel's EM64T Pentium4)

« Most ISAs moving to 64 bits (if not already there)

36

How Many Registers?

Registers faster than memory, have as many as possible?
* No
One reason registers are faster: there are fewer of them
« Small is fast (hardware truism)
Another: they are directly addressed (no address calc)
— More of them, means larger specifiers
— Fewer registers per instruction or indirect addressing
Not everything can be put in registers
 Structures, arrays, anything pointed-to
— More registers > more saving/restoring
« Trend: more registers: 8 (x86)—32 (MIPS) —128 (IA64)

» 64-bit x86 has 16 64-bit integer and 16 128-bit FP
registers

37

How Are Memory Locations Specified?

« Registers are specified directly
 Register names are short, encoded in instructions
« Some instructions implicitly read/write certain registers

« How are addresses specified?
« Addresses are long (64-bit)

- Addressing mode: how are insn bits converted to
addresses?

38

Memory Addressing

- Addressing mode: way of specifying address
« Used in mem-mem or load/store instructions in register ISA
« Examples
« Register-Indirect: R1=mem[R2]
- Displacement: Rl1=mem[R2+immed]
« Index-base: Rl1=mem[R2+R3]
 Memory-indirect: R1=mem[mem[R2]]
* Auto-increment: R1=mem[R2], R2= R2+1
« Auto-indexing: R1=mem[R2+immed], R2=R2+immed
« Scaled: R1=mem[R2+R3*immedl+immed2]
« PC-relative: R1=mem[PC+imm]
« What high-level program idioms are these used for?
- What implementation impact? What impact on insn count?

Addressing Modes Examples

« MIPS

- Displacement: R1+offset (16-bit)
« Experiments showed this covered 80% of accesses on VAX

« x86 (MQV instructions)
« Absolute: zero + offset (8/16/32-bit)
Register indirect: R1
Indexed: R1+R2
Displacement: R1+offset (8/16/32-bit)
Scaled: R1 + (R2*Scale) + offset(8/16/32-bit)
Scale=1, 2,4, 8

2 more issues: alignment & endianness

40

How Many Explicit Operands / ALU Insn?

Operand model: how many explicit operands / ALU insn?
« 3: general-purpose
add R1,R2,R3 means [R1] = [R2] + [R3] (MIPS)
« 2: multiple explicit accumulators (output also input)
add R1,R2 means [R2] = [R2] + [R1] (x86)
« 1: one implicit accumulator
add R1 means ACC = ACC + [R1]

« 0: hardware stack
add means STK[TOS++] = STK[--TOS] + STK[--TOS]
« 4+ useful only in special situations

Examples show register operands but operands can be memory
addresses, or mixed register/memory

ISA w/register-only ALU insns are = load-store architecture

41

Operand Model Pros and Cons

Metric I static code size
« Want: many implicit operands (stack), high level insns

Metric II: data memory traffic
« Want: many long-lived operands on-chip (load-store)

Metric III: CPI
« Want: short latencies, little variability (load-store)

CPI and data memory traffic more important these days

Trend: most new ISAs are load-store ISAs or hybrids

42

Control Transfers

Fetch
Decode
Read Inputs

Execute
Write Output
Next Insn

Default next-PC is PC + sizeof(current insn)
* Note: PC called IR (instruction register) in x86

Branches and jumps can change that
« Otherwise dynamic program == static program
 Not useful

Computing targets: where to jump to
 For all branches and jumps
« Absolute / PC-relative / indirect

Testing conditions: whether to jump at all
 For (conditional) branches only

« Compare-branch / condition-codes / condition
registers

43

Control Transfers I: Computing Targets

The issues

« How far (statically) do you need to jump? (w/in fn vs outside)

« Do you need to jump to a different place each time?

- How many bits do you need to encode the target?
PC-relative

« Position-independent within procedure

« Used for branches and jumps within a procedure
Absolute

 Position independent outside procedure

« Used for procedure calls
Indirect (target found in register)

« Needed for jumping to dynamic targets

« For returns, dynamic procedure calls, switch statements

44

Control Transfers II: Testing Conditions

Compare and branch insns
branch-less-than R1,10,target

+Simple
— Two ALUs (for condition & target address)
— Extra latency
Implicit condition codes (x86)
cmp R1,10 // sets “negative” CC/flag
branch-neg target
+ More room for target, condition codes set “for free”
+ Branch insn simple and fast
— Implicit dependence is tricky

Conditions in regs, separate branch (MIPS)
set-less-than R2,R1,10
branch-not-equal-zero R2, target

— Additional insns
+ one ALU per insn, explicit dependence
> 80% of branches are (in)equalities/comparisons to 0

45

ISAs Also Include Support For...

« Operating systems & memory protection
 Privileged mode
« System call (TRAP)
« Exceptions & interrupts
 Interacting with I/O devices

« Multiprocessor support
« “Atomic” operations for synchronization

- Data-level parallelism

« Pack many values into a wide register
« Intel’s SSE2: 4x32-bit float-point values in 128-bit register
« Define parallel operations (four “adds” in one cycle)

The RISC vs. CISC Debate

RISC and CISC

« RISC: reduced-instruction set computer
« Coined by Patterson in early 80s

« Berkeley RISC-I (Patterson), Stanford MIPS (Hennessy), IBM
801 (Cocke), PowerPC, ARM, SPARC, Alpha, PA-RISC

« CISC: complex-instruction set computer
« Term didn't exist before “RISC"
« X86, VAX, Motorola 68000, etc.

 Philosophical war (one of several) started in mid 1980s
« RISC “won” the technology battles

« CISC won the high-end commercial war (1990s to today)
« Compatibility a stronger force than anyone (but Intel) thought

« RISC won the embedded computing war

The Setup

« Pre 1980

» Bad compilers (so assembly written by hand)

« Complex, high-level ISAs (easier to write assembly)
« Around 1982

« Moore’s Law makes fast single-chip microprocessor
possible... .. .but only for small, simple ISAs

« Performance advantage of “integration” was compelling
« Compilers had to get involved in a big way

RISC manifesto: create ISAs that...
« Simplify single-chip implementation
 Facilitate optimizing compilation

The RISC Tenets

Single-cycle execution

« CISC: many multicycle operations
Hardwired control

« CISC: microcoded multi-cycle operations
Load/store architecture

» CISC: register-memory and memory-memory
Few memory addressing modes

« CISC: many modes
Fixed-length instruction format

« CISC: many formats and lengths
Reliance on compiler optimizations

« CISC: hand assemble to get good performance
Many registers (compilers are better at using them)

« CISC: few registers

CISCs and RISCs

« The CISCs: x86, VAX (Virtual Address eXtension to PDP-11)
 Variable length instructions: 1-321 bytes!!!
* 14 GPRs + PC + stack-pointer + condition codes
« Data sizes: 8, 16, 32, 64, 128 bit, decimal, string
« Memory-memory instructions for all data sizes
« Special insns: cre, insque, poly£, and a cast of hundreds
« x86: "Difficult to explain and impossible to love”
« The RISCs: MIPS, PA-RISC, SPARC, PowerPC, Alpha, ARM
« 32-bit instructions
32 integer registers, 32 floating point registers, load-store
64-bit virtual address space
Few addressing modes (Alpha has 1, SPARC/PowerPC more)
Why so many? Everyone wanted their own

The Debate

« RISC argument
« CISC is fundamentally handicapped by complexity

« For a given technology, RISC will be better (faster)
 Current technology enables single-chip RISC
« When it enables single-chip CISC, RISC will be pipelined
« When it enables pipelined CISC, RISC will have caches
« When it enables CISC with caches, RISC will have next thing...

e CISC rebuttal
« CISC flaws not fundamental, fixable with more transistors

« Moore’s Law will narrow the RISC/CISC gap (true)
« Good pipeline: RISC = 100K transistors, CISC = 300K
« By 1995: 2M+ transistors had evened playing field

 Software costs dominate, compatibility is paramount

Current Winner (Volume): RISC

* ARM (Acorn RISC Machine — Advanced RISC Machine)
 First ARM chip in mid-1980s (from Acorn Computer Ltd).
« 1.2 billion units sold in 2004 (>50% of all 32/64-bit CPUs)
« Low-power and embedded devices (iPod, for example)
« Significance of embedded? ISA compatibility less powerful force
« 32-bit RISC ISA
« 16 registers, PC is one of them
« Many addressing modes, e.g., auto increment
« Condition codes, each instruction can be conditional
« Multiple implementations
 X-scale (design was DEC's, bought by Intel, sold to Marvel)

« Others: Freescale (was Motorola), Texas Instruments,
STMicroelectronics, Samsung, Sharp, Philips, etc.

Current Winner (Revenue): CISC

« x86 was first 16-bit microprocessor by ~2 years
« IBM put it into its PCs because there was no competing choice
 Rest is historical inertia and “financial feedback”
« X86 is most difficult ISA to implement and do it fast but...
Because Intel sells the most non-embedded processors...
It has the most money...
Which it uses to hire more and better engineers...
Which it uses to maintain competitive performance ...
And given competitive performance, compatibility wins...
S0 Intel sells the most non-embedded processors...

« AMD as a competitor keeps pressure on x86 performance

« Moore’s law has helped Intel in a big way
« Most engineering problems can be solved with more transistors

54

Intel’s Compatibility Trick: RISC Inside

« 1993: Intel wanted out-of-order execution in Pentium Pro
« Hard to do with a coarse grain ISA like x86

 Solution? Translate x86 to RISC pops in hardware
push $eax
becomes (we think, uops are proprietary)
store $eax [Sesp-4]
addi $esp, Sesp, -4

+ Processor maintains x86 ISA externally for compatibility
+ But executes RISC uISA internally for implementability

 Given translator, x86 almost as easy to implement as RISC
« Intel implemented out-of-order before any RISC company
« Also, 000 also benefits x86 more (because ISA limits compiler)

« Idea co-opted by other x86 companies: AMD and Transmeta

55

Enter Micro-Ops (1)

Most instructions are a single micro-op, uop
« Add, xor, compare, branch, etc.
« Loads example: mov -4(%rax), %ebx
 Stores example: mov %ebx, -4(%rax)
Each operation on a memory location - micro-ops++
« “addl -4(%rax), %ebx” = 2 uops (load, add)
« “addl %ebx, -4(%rax)” = 3 uops (load, add, store)
What about address generation?
- Simple address generation: single micro-op

« Complicated (scaled addressing) & sometimes store
addresses: calculated separately

Enter Micro-Ops (2)

Function call (CALL) — 4 uops

» (et program counter, store program counter to stack,
adjust stack pointer, unconditional jump to function start

Return from function (RET) — 3 uops

« Adjust stack pointer, load return address from stack, jump
to return address

Other operations
 String manipulations instructions
« For example STOS is around six micro-ops, etc.

Micro-ops: part of the microarchitecture, not the architecture

Cracking Macro-ops into Micro-ops

Two forms of pop “cracking”
« Hard-coded logic: fast, but expensive (for insn in few pops)
« Simple Decoder: 121
« Complex Decoder: 1> 2-4
* 4x Iin size
« Table Lookup: slow, but “off to the side” (not shown)
- doesn’t complicate rest of machine
« Handles really complicated instructions

5 Simple Decoded/Cracked
Fetched Instructions Decoder Instructions

Complex
add | stos cmp& iii ‘ sub =

Big Table stos F

(far away) -

Micro-Op changes over time

x86 code is becoming more “RISC-like”,
IA32 > x86-64.

1. Double number of registers

2. Better function calling conventions

« Result? Fewer pushes, pops, and complicated instructions
~1.6 gops / macro-op > ~1.1 pops / macro-op

Fusion: Intel’s newest processors fuse certain instruction pairs

« Macro-op fusion: fuses “compare” and “branch” instructions
« 2 macro-ops = 1 simple micro-op (uses simple decoder)

« Micro-op fusion: fuses Id/add pairs, fuses store “addr” & “data”
« 1 complex micro-op = 1 simple micro-op (uses simple decoder)

Ultimate Compatibility Trick

« Support old ISA with...
« ...a simple processor for that ISA in the system

« How first Itanium supported x86 code
« X86 processor (comparable to Pentium) on chip

« How PlayStation2 supported PlayStation games
 Used PlayStation processor for I/O chip & emulation

60

Translation and Virtual ISAs

« New compatibility interface: ISA + translation software
- Binary-translation: transform static image, run native
- Emulation: unmodified image, interpret each dynamic insn,
optimize on-the-fly
« Examples: FX!32 (x86 on Alpha), Rosetta (PowerPC on x86)
 Virtual ISAs: designed for translation, not direct execution
 Target for high-level compiler (one per language)
« Source for low-level translator (one per ISA)

« Examples: Java Bytecodes, C# CLR (Common Language
Runtime)

« Transmeta’s Code morphing: x86 translation in software
« Only “code morphing” translation software written in native ISA
 Native ISA is invisible to applications and even OS
« Guess who owns this technology now?

61

RISC & CISC for Performance

Recall performance equation:

seconds instructions cycles seconds
= X . .
program program Instruction cycle

CISC (Complex Instruction Set Computing)
RISC (Reduced Instruction Set Computing)

insns cycles seconds

- other
program insn cycle

62

RISC & CISC for Performance

Recall performance equation:

seconds instructions cycles seconds
= X . .
program program Instruction cycle

CISC (Complex Instruction Set Computing)
RISC (Reduced Instruction Set Computing)

insns cycles seconds

- other
program insn cycle

+ Easy for assembly-
l 1 1 level programmers
+ good code density

T l + smart compilers can

opefully not l if designed | heln with insns/program
too much aggressively

	Slide 29: Aspects of ISAs
	Slide 30: Aspects of ISAs
	Slide 31: The Sequential Model
	Slide 32: Instruction Length and Format
	Slide 33: Example Instruction Encodings
	Slide 34: Operations and Datatypes
	Slide 35: Where Does Data Live?
	Slide 36: How Much Memory? Address Size
	Slide 37: How Many Registers?
	Slide 38: How Are Memory Locations Specified?
	Slide 39: Memory Addressing
	Slide 40: Addressing Modes Examples
	Slide 41: How Many Explicit Operands / ALU Insn?
	Slide 42: Operand Model Pros and Cons
	Slide 43: Control Transfers
	Slide 44: Control Transfers I: Computing Targets
	Slide 45: Control Transfers II: Testing Conditions
	Slide 46: ISAs Also Include Support For…
	Slide 47: The RISC vs. CISC Debate
	Slide 48: RISC and CISC
	Slide 49: The Setup
	Slide 50: The RISC Tenets
	Slide 51: CISCs and RISCs
	Slide 52: The Debate
	Slide 53: Current Winner (Volume): RISC
	Slide 54: Current Winner (Revenue): CISC
	Slide 55: Intel’s Compatibility Trick: RISC Inside
	Slide 56: Enter Micro-Ops (1)
	Slide 57: Enter Micro-Ops (2)
	Slide 58: Cracking Macro-ops into Micro-ops
	Slide 59: Micro-Op changes over time
	Slide 60: Ultimate Compatibility Trick
	Slide 61: Translation and Virtual ISAs
	Slide 62: RISC & CISC for Performance
	Slide 64: RISC & CISC for Performance

