
Aspects of ISAs

29

Aspects of ISAs

Begin with VonNeumann model

• Implicit structure of all modern ISAs

• CPU + memory (data & insns)

• Sequential instructions

• Format

• Length and encoding

• Operand model

• Where (other than memory) are operands stored?

• Datatypes and operations

• Control

30

The Sequential Model

• Implicit model of all modern ISAs

• Basic feature: the program counter (PC)

• Defines total order on dynamic instruction

• Next PC is PC++ (except for ctrl insns)

• Order + named storage define computation

Value flows from X to Y via storage A iff:

• Processor logically executes loop at left

• Instruction execution assumed atomic

• Instruction X finishes before insn X+1 starts

• More parallel alternatives have been proposed

31

Fetch PC

Decode

Read Inputs

Execute

Write Output

Next PC
→ Ainsn X output A

A →insn Y input A

Instruction Length and Format
Length

• Fixed length

• Most common is 32 bits

+ Simple implementation (next PC often just PC+4)

– Code density: 32 bits to increment a register by 1

• Variable length

+ Code density

+ x86 can do increment in one 8-bit instruction

– Complex fetch (where does next instruction
begin?)

• Compromise: two lengths

• E.g., MIPS16 or ARM’s Thumb

Encoding

• A few simple encodings simplify decoder

• x86 decoder one nasty piece of logic
32

Fetch[PC]

Decode

Read Inputs

Execute

Write Output

Next PC

Example Instruction Encodings

MIPS

• Fixed length

• 32-bits, 3 formats, simple encoding

x86

• Variable length encoding (1 to 15 bytes)

33

Op(6) Rs(5) Rt(5) Rd(5) Sh(5) Func(6)R-type

Op(6) Rs(5) Rt(5) Immed(16)I-type

Op(6) Target(26)J-type

Op OpExt* ModRM* SIB* Disp*(1-4) Imm*(1-4)Prefix*(1-4)

Operations and Datatypes
• Datatypes

• S/W: attribute of data
• H/W: attribute of operation, data is just 0/1’s

• All processors support
• 2’s complement integer arithmetic/logic

(8/16/32/64-bit)
• IEEE754 floating-point arithmetic (32/64 bit)

• Intel has 80-bit floating-point

• Most processors now support
• “Packed-integer” insns, e.g., MMX
• “Packed-fp” insns, e.g., SSE/SSE2
• For multimedia, more about these later

• Processors no longer (??) support
• Decimal, other fixed-point arithmetic
• Binary-coded decimal (BCD)

34

Fetch

Decode

Read Inputs

Execute

Write Output

Next Insn

Where Does Data Live?

• Memory

• Fundamental storage space

• Registers

• Faster than memory, quite handy

• Most processors have these too

• Immediates

• Values spelled out as bits in instructions

• Input only

35

Fetch

Decode

Read Inputs

Execute

Write Output

Next Insn

How Much Memory? Address Size
• What does “64-bit” in a 64-bit ISA mean?

• Support memory size of 264

• Alternative (wrong) definition: width of calculation
operations

• “Virtual” address size

• Determines size of addressable (usable) memory

• x86 evolution:

• 4-bit (4004), 8-bit (8008), 16-bit (8086), 24-bit (80286),

• 32-bit + protected memory (80386)

• 64-bit (AMD’s Opteron & Intel’s EM64T Pentium4)

• Most ISAs moving to 64 bits (if not already there)

36

How Many Registers?

• Registers faster than memory, have as many as possible?
• No

• One reason registers are faster: there are fewer of them
• Small is fast (hardware truism)

• Another: they are directly addressed (no address calc)
– More of them, means larger specifiers
– Fewer registers per instruction or indirect addressing

• Not everything can be put in registers
• Structures, arrays, anything pointed-to

– More registers → more saving/restoring
• Trend: more registers: 8 (x86)→32 (MIPS) →128 (IA64)

• 64-bit x86 has 16 64-bit integer and 16 128-bit FP
registers

37

How Are Memory Locations Specified?

• Registers are specified directly

• Register names are short, encoded in instructions

• Some instructions implicitly read/write certain registers

• How are addresses specified?

• Addresses are long (64-bit)

• Addressing mode: how are insn bits converted to
addresses?

38

Memory Addressing

• Addressing mode: way of specifying address

• Used in mem-mem or load/store instructions in register ISA

• Examples

• Register-Indirect: R1=mem[R2]

• Displacement: R1=mem[R2+immed]

• Index-base: R1=mem[R2+R3]

• Memory-indirect: R1=mem[mem[R2]]

• Auto-increment: R1=mem[R2], R2= R2+1

• Auto-indexing: R1=mem[R2+immed], R2=R2+immed

• Scaled: R1=mem[R2+R3*immed1+immed2]

• PC-relative: R1=mem[PC+imm]

• What high-level program idioms are these used for?

• What implementation impact? What impact on insn count?

39

Addressing Modes Examples

• MIPS
• Displacement: R1+offset (16-bit)

• Experiments showed this covered 80% of accesses on VAX

• x86 (MOV instructions)
• Absolute: zero + offset (8/16/32-bit)
• Register indirect: R1
• Indexed: R1+R2
• Displacement: R1+offset (8/16/32-bit)
• Scaled: R1 + (R2*Scale) + offset(8/16/32-bit)
 Scale = 1, 2, 4, 8

2 more issues: alignment & endianness

40

How Many Explicit Operands / ALU Insn?

• Operand model: how many explicit operands / ALU insn?

• 3: general-purpose

add R1,R2,R3 means [R1] = [R2] + [R3] (MIPS)

• 2: multiple explicit accumulators (output also input)

add R1,R2 means [R2] = [R2] + [R1] (x86)

• 1: one implicit accumulator

add R1 means ACC = ACC + [R1]

• 0: hardware stack

add means STK[TOS++] = STK[--TOS] + STK[--TOS]

• 4+: useful only in special situations

• Examples show register operands but operands can be memory
addresses, or mixed register/memory

• ISA w/register-only ALU insns are = load-store architecture

41

Operand Model Pros and Cons
• Metric I: static code size

• Want: many implicit operands (stack), high level insns

• Metric II: data memory traffic

• Want: many long-lived operands on-chip (load-store)

• Metric III: CPI

• Want: short latencies, little variability (load-store)

• CPI and data memory traffic more important these days

• Trend: most new ISAs are load-store ISAs or hybrids

42

Control Transfers

• Default next-PC is PC + sizeof(current insn)
• Note: PC called IR (instruction register) in x86

• Branches and jumps can change that
• Otherwise dynamic program == static program
• Not useful

• Computing targets: where to jump to
• For all branches and jumps
• Absolute / PC-relative / indirect

• Testing conditions: whether to jump at all
• For (conditional) branches only
• Compare-branch / condition-codes / condition

registers

43

Fetch

Decode

Read Inputs

Execute

Write Output

Next Insn

Control Transfers I: Computing Targets

• The issues

• How far (statically) do you need to jump? (w/in fn vs outside)

• Do you need to jump to a different place each time?

• How many bits do you need to encode the target?

• PC-relative

• Position-independent within procedure

• Used for branches and jumps within a procedure

• Absolute

• Position independent outside procedure

• Used for procedure calls

• Indirect (target found in register)

• Needed for jumping to dynamic targets

• For returns, dynamic procedure calls, switch statements

44

Control Transfers II: Testing Conditions
• Compare and branch insns

branch-less-than R1,10,target

+Simple
– Two ALUs (for condition & target address)
– Extra latency

• Implicit condition codes (x86)
cmp R1,10 // sets “negative” CC/flag

branch-neg target

+ More room for target, condition codes set “for free”
+ Branch insn simple and fast
– Implicit dependence is tricky

• Conditions in regs, separate branch (MIPS)
set-less-than R2,R1,10

branch-not-equal-zero R2,target

– Additional insns
+ one ALU per insn, explicit dependence
> 80% of branches are (in)equalities/comparisons to 0

45

ISAs Also Include Support For…
• Operating systems & memory protection

• Privileged mode

• System call (TRAP)

• Exceptions & interrupts

• Interacting with I/O devices

• Multiprocessor support

• “Atomic” operations for synchronization

• Data-level parallelism

• Pack many values into a wide register

• Intel’s SSE2: 4x32-bit float-point values in 128-bit register

• Define parallel operations (four “adds” in one cycle)

46

The RISC vs. CISC Debate

47

RISC and CISC
• RISC: reduced-instruction set computer

• Coined by Patterson in early 80s

• Berkeley RISC-I (Patterson), Stanford MIPS (Hennessy), IBM
801 (Cocke), PowerPC, ARM, SPARC, Alpha, PA-RISC

• CISC: complex-instruction set computer

• Term didn’t exist before “RISC”

• x86, VAX, Motorola 68000, etc.

• Philosophical war (one of several) started in mid 1980s

• RISC “won” the technology battles

• CISC won the high-end commercial war (1990s to today)

• Compatibility a stronger force than anyone (but Intel) thought

• RISC won the embedded computing war

48

The Setup

• Pre 1980

• Bad compilers (so assembly written by hand)

• Complex, high-level ISAs (easier to write assembly)

• Around 1982

• Moore’s Law makes fast single-chip microprocessor
possible… …but only for small, simple ISAs

• Performance advantage of “integration” was compelling

• Compilers had to get involved in a big way

RISC manifesto: create ISAs that…

• Simplify single-chip implementation

• Facilitate optimizing compilation

49

The RISC Tenets
• Single-cycle execution

• CISC: many multicycle operations

• Hardwired control

• CISC: microcoded multi-cycle operations

• Load/store architecture

• CISC: register-memory and memory-memory

• Few memory addressing modes

• CISC: many modes

• Fixed-length instruction format

• CISC: many formats and lengths

• Reliance on compiler optimizations

• CISC: hand assemble to get good performance

• Many registers (compilers are better at using them)

• CISC: few registers

50

CISCs and RISCs

• The CISCs: x86, VAX (Virtual Address eXtension to PDP-11)

• Variable length instructions: 1-321 bytes!!!

• 14 GPRs + PC + stack-pointer + condition codes

• Data sizes: 8, 16, 32, 64, 128 bit, decimal, string

• Memory-memory instructions for all data sizes

• Special insns: crc, insque, polyf, and a cast of hundreds

• x86: “Difficult to explain and impossible to love”

• The RISCs: MIPS, PA-RISC, SPARC, PowerPC, Alpha, ARM

• 32-bit instructions

• 32 integer registers, 32 floating point registers, load-store

• 64-bit virtual address space

• Few addressing modes (Alpha has 1, SPARC/PowerPC more)

• Why so many? Everyone wanted their own

51

The Debate
• RISC argument

• CISC is fundamentally handicapped by complexity

• For a given technology, RISC will be better (faster)

• Current technology enables single-chip RISC

• When it enables single-chip CISC, RISC will be pipelined

• When it enables pipelined CISC, RISC will have caches

• When it enables CISC with caches, RISC will have next thing...

• CISC rebuttal

• CISC flaws not fundamental, fixable with more transistors

• Moore’s Law will narrow the RISC/CISC gap (true)

• Good pipeline: RISC = 100K transistors, CISC = 300K

• By 1995: 2M+ transistors had evened playing field

• Software costs dominate, compatibility is paramount

52

Current Winner (Volume): RISC

• ARM (Acorn RISC Machine → Advanced RISC Machine)

• First ARM chip in mid-1980s (from Acorn Computer Ltd).

• 1.2 billion units sold in 2004 (>50% of all 32/64-bit CPUs)

• Low-power and embedded devices (iPod, for example)

• Significance of embedded? ISA compatibility less powerful force

• 32-bit RISC ISA

• 16 registers, PC is one of them

• Many addressing modes, e.g., auto increment

• Condition codes, each instruction can be conditional

• Multiple implementations

• X-scale (design was DEC’s, bought by Intel, sold to Marvel)

• Others: Freescale (was Motorola), Texas Instruments,
STMicroelectronics, Samsung, Sharp, Philips, etc.

53

Current Winner (Revenue): CISC

• x86 was first 16-bit microprocessor by ~2 years

• IBM put it into its PCs because there was no competing choice

• Rest is historical inertia and “financial feedback”

• x86 is most difficult ISA to implement and do it fast but…

• Because Intel sells the most non-embedded processors…

• It has the most money…

• Which it uses to hire more and better engineers…

• Which it uses to maintain competitive performance …

• And given competitive performance, compatibility wins…

• So Intel sells the most non-embedded processors…

• AMD as a competitor keeps pressure on x86 performance

• Moore’s law has helped Intel in a big way

• Most engineering problems can be solved with more transistors

54

Intel’s Compatibility Trick: RISC Inside

• 1993: Intel wanted out-of-order execution in Pentium Pro

• Hard to do with a coarse grain ISA like x86

• Solution? Translate x86 to RISC ops in hardware
push $eax

becomes (we think, uops are proprietary)

store $eax [$esp-4]

addi $esp,$esp,-4

+ Processor maintains x86 ISA externally for compatibility

+ But executes RISC ISA internally for implementability

• Given translator, x86 almost as easy to implement as RISC

• Intel implemented out-of-order before any RISC company

• Also, OoO also benefits x86 more (because ISA limits compiler)

• Idea co-opted by other x86 companies: AMD and Transmeta

55

Enter Micro-Ops (1)

Most instructions are a single micro-op, uop

• Add, xor, compare, branch, etc.

• Loads example: mov -4(%rax), %ebx

• Stores example: mov %ebx, -4(%rax)

Each operation on a memory location → micro-ops++

• “addl -4(%rax), %ebx” = 2 uops (load, add)

• “addl %ebx, -4(%rax)” = 3 uops (load, add, store)

What about address generation?

• Simple address generation: single micro-op

• Complicated (scaled addressing) & sometimes store
addresses: calculated separately

56

Enter Micro-Ops (2)

Function call (CALL) – 4 uops

• Get program counter, store program counter to stack,
adjust stack pointer, unconditional jump to function start

Return from function (RET) – 3 uops

• Adjust stack pointer, load return address from stack, jump
to return address

Other operations

• String manipulations instructions

• For example STOS is around six micro-ops, etc.

Micro-ops: part of the microarchitecture, not the architecture

57

retret

Cracking Macro-ops into Micro-ops
Two forms of μop “cracking”

• Hard-coded logic: fast, but expensive (for insn in few μops)

• Simple Decoder: 1→1

• Complex Decoder: 1→ 2-4

• 4x in size

• Table Lookup: slow, but “off to the side” (not shown)

 → doesn’t complicate rest of machine

• Handles really complicated instructions

58

subretcmpstosadd

Simple
Decoder

Complex
Decoder

Big Table
(far away)

stosstosstosstosstos

Fetched Instructions
Decoded/Cracked

Instructions

Complex
Decoder

Complex
Decoder

Complex
Decoder

Micro-Op changes over time

x86 code is becoming more “RISC-like”.

IA32 → x86-64:

1. Double number of registers

2. Better function calling conventions

• Result? Fewer pushes, pops, and complicated instructions

~1.6 μops / macro-op → ~1.1 μops / macro-op

Fusion: Intel’s newest processors fuse certain instruction pairs

• Macro-op fusion: fuses “compare” and “branch” instructions

• 2 macro-ops → 1 simple micro-op (uses simple decoder)

• Micro-op fusion: fuses ld/add pairs, fuses store “addr” & “data”

• 1 complex micro-op → 1 simple micro-op (uses simple decoder)

59

Ultimate Compatibility Trick

• Support old ISA with…

• …a simple processor for that ISA in the system

• How first Itanium supported x86 code

• x86 processor (comparable to Pentium) on chip

• How PlayStation2 supported PlayStation games

• Used PlayStation processor for I/O chip & emulation

60

Translation and Virtual ISAs

• New compatibility interface: ISA + translation software

• Binary-translation: transform static image, run native

• Emulation: unmodified image, interpret each dynamic insn,
optimize on-the-fly

• Examples: FX!32 (x86 on Alpha), Rosetta (PowerPC on x86)

• Virtual ISAs: designed for translation, not direct execution

• Target for high-level compiler (one per language)

• Source for low-level translator (one per ISA)

• Examples: Java Bytecodes, C# CLR (Common Language
Runtime)

• Transmeta’s Code morphing: x86 translation in software

• Only “code morphing” translation software written in native ISA

• Native ISA is invisible to applications and even OS

• Guess who owns this technology now?

61

RISC & CISC for Performance

Recall performance equation:

CISC (Complex Instruction Set Computing)

RISC (Reduced Instruction Set Computing)

 seconds instructions cycles seconds
 program program instruction cycle= x x

insns
program

cycles
insn

seconds
cycle

other

CISC

RISC

62

RISC & CISC for Performance

Recall performance equation:

CISC (Complex Instruction Set Computing)

RISC (Reduced Instruction Set Computing)

insns
program

cycles
insn

seconds
cycle

other

CISC

RISC

↓

↑
hopefully not

too much

↑ ↑
+ Easy for assembly-
 level programmers
+ good code density

↓
+ smart compilers can

help with insns/program

↓
if designed
aggressively

64

 seconds instructions cycles seconds
 program program instruction cycle= x x

	Slide 29: Aspects of ISAs
	Slide 30: Aspects of ISAs
	Slide 31: The Sequential Model
	Slide 32: Instruction Length and Format
	Slide 33: Example Instruction Encodings
	Slide 34: Operations and Datatypes
	Slide 35: Where Does Data Live?
	Slide 36: How Much Memory? Address Size
	Slide 37: How Many Registers?
	Slide 38: How Are Memory Locations Specified?
	Slide 39: Memory Addressing
	Slide 40: Addressing Modes Examples
	Slide 41: How Many Explicit Operands / ALU Insn?
	Slide 42: Operand Model Pros and Cons
	Slide 43: Control Transfers
	Slide 44: Control Transfers I: Computing Targets
	Slide 45: Control Transfers II: Testing Conditions
	Slide 46: ISAs Also Include Support For…
	Slide 47: The RISC vs. CISC Debate
	Slide 48: RISC and CISC
	Slide 49: The Setup
	Slide 50: The RISC Tenets
	Slide 51: CISCs and RISCs
	Slide 52: The Debate
	Slide 53: Current Winner (Volume): RISC
	Slide 54: Current Winner (Revenue): CISC
	Slide 55: Intel’s Compatibility Trick: RISC Inside
	Slide 56: Enter Micro-Ops (1)
	Slide 57: Enter Micro-Ops (2)
	Slide 58: Cracking Macro-ops into Micro-ops
	Slide 59: Micro-Op changes over time
	Slide 60: Ultimate Compatibility Trick
	Slide 61: Translation and Virtual ISAs
	Slide 62: RISC & CISC for Performance
	Slide 64: RISC & CISC for Performance

