
CSE 560
Computer Systems Architecture

Instruction Set Architecture

Instruction Set Architecture (ISA)

• What is an ISA?
• A functional contract

• All ISAs similar at a high level
• Design choices in the details
• 2 “philosophies”: CISC/RISC

• Difference is blurring

• Good ISA…
• Enables high performance

• Importance of Compatibility
• Tricks: binary translation,

μISAs

2

Application

OS

FirmwareCompiler

CPU I/O

Memory

Digital Circuits

Gates & Transistors

ISWhat?

Question: How have I lived such a productive geek life

without getting my hands on an ISA?

Likely Answer: Because you are young/started late enough

not to have suffered through pre-compiler days.

Snarky Answer: Maybe you weren’t as productive as you

think you were. ;)

3

ISA

How far are you willing to go for good performance?

Ideally: programmers need only write good programs

In reality: programmers want to see/consider the assembly

to improve performance (compiler choices, etc.)

In some realities: designers consider ISA alterations to

improve performance further

4

Big Picture (and Review)

5

Program Compilation

Program written in high-level programming language (C, C++, Java, C#)

• Hierarchical, structured control: loops, functions, conditionals

• Hierarchical, structured data: scalars, arrays, pointers, structures

Assembly language

• Human-readable representation of actual machine instructions

Machine language

• Machine-readable representation of machine instructions

• 1s and 0s (often displayed in hex)

6

int sum(int x, int y)

{

 int t = x+y;

 return t;

}

Assembly
_sum:

 pushl %ebp

 movl %esp,%ebp

 movl 12(%ebp),%eax

 addl 8(%ebp),%eax

 movl %ebp,%esp

 popl %ebp

 ret

Code
0x401040

<sum>:

 0x55

 0x89

 0xe5

 0x8b

 0x45

 ...

Machine Code

compiler assembler

Code Review

Which of the following statements is false?

A. A compiler needs to be written with both the
programming language and the target ISA in mind.

B. You can determine the number of static instructions in a
program by looking at the assembly code.

C. A compiler can take assembled code for one ISA and
prepare efficient object/machine code for a different ISA.

D. It’s easier to convert assembled code into object/machine
code than it is to convert C code into assembly code.

E. Compiler optimizations usually take place before the
assembly code is produced.

7

Code Review
Which of the following statements is false?

A. A compiler needs to be written with both the
programming language and the target ISA in mind.

B. You can determine the number of static instructions in a
program by looking at the assembly code.

C. A compiler can take assembled code for one ISA
and prepare efficient object/machine code for a
different ISA.

D. It’s easier to convert assembled code into object/machine
code than it is to convert C code into assembly code.

E. Compiler optimizations usually take place before the
assembly code is produced.

8

Reasoning About Performance

How long does it take for a program to execute?

Three factors

1. How many instructions must execute to complete program

2. How fast is a single cycle

3. How many cycles does each instruction take to execute

9

Execution Time =

 instructions seconds cycles

 program cycle instruction
x x

Maximizing Performance

Instructions per program:

• Determined by program, compiler, instruction set architecture (ISA)

Seconds per cycle: clock period

• Typical range today: 2ns to 0.25ns

• Reciprocal is frequency: 0.5 GHz to 4 GHz (1 Hz = 1 cycle per sec)

• Determined by micro-architecture, technology parameters

Cycles per Instruction: CPI

• Typical range today: 2 to 0.5

• Determined by program, compiler, ISA, micro-architecture

Minimum execution time → minimize each term

• Difficult: often pull against one another

10

Execution Time =

 instructions seconds cycles

 program cycle instruction
x x

What is an ISA?

11

What Is An ISA?

ISA (instruction set architecture)

• A well-defined hardware/software interface

• The “contract” between software and hardware

• Functional definition of operations, modes, and
storage locations supported by hardware

• Precise description of how to invoke, access
them

• Included in ISA:

• Actual machine instructions (instruction set)

• Storage interface (registers and memory)

• Operating modes (user mode vs. supervisor mode)

12

What Is Not In The ISA?

• Not in the “contract”: non-functional aspects

• How operations are implemented

• Which operations are fast, which are slow and
when

• Which operations take more/less power

• How memory is implemented

• Whether or not there is a cache

14

ISA as Contract (1)

Which of the following is considered part of an ISA?

A. Whether a multiply can operate on data still in memory.

B. Whether branch prediction is used.

C. The number of cycles it takes to execute a multiply.

D. The number of physical registers the machine has.

E. Whether instructions can be executed out of order.

15

ISA as Contract (1)

Which of the following is considered part of an ISA?

A. Whether a multiply can operate on data still in
memory.

B. Whether branch prediction is used.

C. The number of cycles it takes to execute a multiply.

D. The number of physical registers the machine has.

E. Whether instructions can be executed out of order.

16

ISA Design Goals

17

What Makes a Good ISA?

1. Programmability

• Easy to express programs efficiently?

2. Implementability

• Easy to design high-performance implementations?

• More recently: low-power, high-reliability, low-cost

3. Compatibility

• Easy to maintain programmability as languages and
programs evolve?

• x86 (IA32) generations: 8086, 286, 386, 486, Pentium,
PentiumII, PentiumIII, Pentium4, Core2…

18

1. Programmability

• Easy to express programs efficiently? For whom?

• Before 1985: human

• Compilers were terrible, often code hand-assembled

• Want high-level coarse-grain instructions

• As similar to high-level language as possible

• After 1985: compiler

• Optimizing compilers generate better code than we do

• Want low-level fine-grain instructions

• Compiler can’t tell if two high-level idioms match exactly

19

Human Programmability
• What makes an ISA easy for a human to program in?

• Proximity to a high-level language (HLL)

• Closing the “semantic gap”

• Semantically heavy (CISC-like) insns that capture complete idioms

• “Access array element”, “loop”, “procedure call”

• Example: SPARC save/restore

• Bad example: x86 rep movsb (copy string)

• Ridiculous example: VAX insque (insert-into-queue)

• “Semantic clash”: what if you have many high-level languages?

• Stranger than fiction
• People once thought computers would execute language directly

• Fortunately, never materialized (but keeps coming back around)

• Now we just ask LLM to write the code for us

20

Today’s Semantic Gap

• Today’s ISAs are actually targeted to one language…

• …Just so happens that this language is very low level

• The C programming language

• Will ISAs be different when Java/C# become dominant?

• Object-oriented? Probably not

• Support for garbage collection? Maybe

• Support for bounds-checking? Maybe

• Why?

• Smart compilers transform HLL to simple instructions

• Any benefit of tailored ISA is likely small

21

Compiler Optimizations (1)

Compilers do two things

• Code generation

• Translate HLL to machine insns, 1 statement at a time

• Optimization

• Preserve meaning but improve performance

• Active research area, but some standard optimizations

• Register allocation, common sub-expression elimination,
loop-invariant code motion, loop unrolling, function
inlining, code scheduling (to increase insn-level
parallelism), etc.

22

Compiler Optimizations (2)
• Reduce dynamic insn count primarily

• Redundant computation, store things in registers

+ Registers are faster, fewer loads/stores

– ISA can make this difficult by having too few registers

• Also reduce:

• Branches and jumps

• Cache misses

• Dependences between nearby insns (for parallelism)

– ISA can make this difficult by having implicit dependences

• How effective are these?

+ Can give 4X performance over unoptimized code

– Collective wisdom of 40 years (“Proebsting’s Law”: Compiler
Advances Double Computing Power Every 18 Years)

• Funny but … don’t laugh at 4X performance

23

ISA as Contract (2)

Which of the following is not considered part of an ISA?

A. The number of architected registers a machine has.

B. Whether the compiler can inject prefetch instructions.

C. Whether the machine supports vector operations.

D. Whether a data is stored in the cache after it is fetched
from memory.

E. The number of bits it takes to encode each instruction.

24

ISA as Contract (2)

Which of the following is not considered part of an ISA?

A. The number of architected registers a machine has.

B. Whether the compiler can inject prefetch instructions.

C. Whether the machine supports vector operations.

D. Whether a data is stored in the cache after it is
fetched from memory.

E. The number of bits it takes to encode each instruction.

25

2. Implementability

• Every ISA can be implemented

• Not every ISA can be implemented efficiently

• Classic high-performance implementation techniques

• Pipelining, parallel execution, out-of-order execution

• Certain ISA features make these difficult

– Variable instruction lengths/formats: complicate decoding

– Implicit state: complicates dynamic scheduling

– Variable latencies: complicates scheduling

– Difficult to interrupt instructions: complicate many things

• Example: memory copy instruction

26

3. Compatibility

• In many domains, ISA must remain compatible

• IBM’s 360/370 (the first “ISA family”)

• Another example: Intel’s x86 and Microsoft Windows

• x86 one of the worst designed ISAs EVER, but survives

• Backward compatibility

• New processors supporting old programs

• Can’t drop features (cumbersome)

• Or, update software/OS to emulate dropped features (slow)

• Forward (upward) compatibility

• Old processors supporting new programs

• Include a “CPU ID” so the software can test for features

• Add ISA hints by overloading no-ops (example: x86’s PAUSE)

• New firmware/software on old processors to emulate new insn

27

The Compatibility Trap

• Easy compatibility requires forethought

• Temptation: some ISA extension gives 5% perf. gain

• Often: gain diminishes, disappears, or turns to loss

– Must continue to support gadget for eternity

• Example: register windows (SPARC) makes OoO difficult

• Compatibility trap door

• How to rid yourself of some ISA mistake in the past?

• Make old insns an “illegal” insn on new machine

• OS handles exception, emulates instruction, returns

• Slow unless extremely uncommon

28

Aspects of ISAs

29

	Slide 1: CSE 560 Computer Systems Architecture
	Slide 2: Instruction Set Architecture (ISA)
	Slide 3: ISWhat?
	Slide 4: ISA
	Slide 5: Big Picture (and Review)
	Slide 6: Program Compilation
	Slide 7: Code Review
	Slide 8: Code Review
	Slide 9: Reasoning About Performance
	Slide 10: Maximizing Performance
	Slide 11: What is an ISA?
	Slide 12: What Is An ISA?
	Slide 14: What Is Not In The ISA?
	Slide 15: ISA as Contract (1)
	Slide 16: ISA as Contract (1)
	Slide 17: ISA Design Goals
	Slide 18: What Makes a Good ISA?
	Slide 19: 1. Programmability
	Slide 20: Human Programmability
	Slide 21: Today’s Semantic Gap
	Slide 22: Compiler Optimizations (1)
	Slide 23: Compiler Optimizations (2)
	Slide 24: ISA as Contract (2)
	Slide 25: ISA as Contract (2)
	Slide 26: 2. Implementability
	Slide 27: 3. Compatibility
	Slide 28: The Compatibility Trap
	Slide 29: Aspects of ISAs

