CSE 560
Computer Systems Architecture

Instruction Set Architecture

Instruction Set Architecture (ISA)

Application
(O
Compiler Firmware
CPU /0O
Memory

Digital Circuits

Gates & Transistors

What is an ISA?

« A functional contract

All ISAs similar at a high level

 Design choices in the details

2 “philosophies”: CISC/RISC
« Difference is blurring

Good ISA...

« Enables high performance

Importance of Compatibility

 Tricks: binary translation,
HMISAS

ISWhat?

Question: How have I lived such a productive geek life
without getting my hands on an ISA?

Likely Answer: Because you are young/started late enough
not to have suffered through pre-compiler days.

Snarky Answer: Maybe you weren’t as productive as you
think you were. ;)

ISA

How far are you willing to go for good performance?

Ideally: programmers need only write good programs

In reality: programmers want to see/consider the assembly
to improve performance (compiler choices, etc.)

In some realities: designers consider ISA alterations to
improve performance further

Big Picture (and Review)

Program Compilation

Code Assembly Machine Code

int sum(int x, int y) _sum: 0x401040
{ pushl %ebp <sum>:
int t = x+y; movl %esp,%ebp 0x55
return t; movl 12 (%ebp) , $eax 0x89
} addl 8 (%ebp) , seax Oxe5
compjler TOVL €PP,3eSP Lecembler 0X8P
— popl %ebp >0x45

ret

Program written in high-level programming language (C, C++, Java, C#)
 Hierarchical, structured control: loops, functions, conditionals
 Hierarchical, structured data: scalars, arrays, pointers, structures
Assembly language
« Human-readable representation of actual machine instructions
Machine language
« Machine-readable representation of machine instructions
« 1s and Os (often displayed in hex)

Code Review

Which of the following statements is false?

LY

A com

piler needs to be written with both the

programming language and the target ISA in mind.

You can determine the number of static instructions in a
program by looking at the assembly code.

. A compiler can take assembled code for one ISA and

prepare efficient object/machine code for a different ISA.

code t
Compi
assem

. It's easier to convert assembled code into object/machine

nan it is to convert C code into assembly code.
er optimizations usually take place before the

bly code is produced.

Code Review

Which of the following statements is false?

A. A com

piler needs to be written with both the

programming language and the target ISA in mind.

B. You can determine the number of static instructions in a
program by looking at the assembly code.

C. A compiler can take assembled code for one ISA
and prepare efficient object/machine code for a
different ISA.

D. It's easier to convert assembled code into object/machine

code t

E. Compi
assem

nan it is to convert C code into assembly code.
er optimizations usually take place before the

bly code is produced.

Reasoning About Performance

How long does it take for a program to execute?

Three factors

1. How many instructions must execute to complete program
2. How fast is a single cycle

3. How many cycles does each instruction take to execute

Execution Time =
instructions seconds cycles
X X - -
program cycle instruction

Maximizing Performance

Execution Time =
instructions seconds cycles

X X - -
program cycle Instruction

Instructions per program:

« Determined by program, compiler, instruction set architecture (ISA)
Seconds per cycle: clock period

 Typical range today: 2ns to 0.25ns

« Reciprocal is frequency: 0.5 GHz to 4 GHz (1 Hz = 1 cycle per sec)

» Determined by micro-architecture, technology parameters
Cycles per Instruction: CPI

» Typical range today: 2 to 0.5

» Determined by program, compiler, ISA, micro-architecture
Minimum execution time - minimize each term

« Difficult: often pull against one another

What is an ISA?

What Is An ISA?

ISA (instruction set architecture)
« A well-defined hardware/software interface
 The “contract” between software and hardware

- Functional definition of operations, modes, and
storage locations supported by hardware

« Precise description of how to invoke, access
them

« Included in ISA:
 Actual machine instructions (instruction set)
» Storage interface (registers and memory)
« Operating modes (user mode vs. supervisor mode)

12

What Is Not In The ISA?

« Not in the “contract”: non-functional aspects
« How operations are implemented

Which operations are fast, which are slow and
when

Which operations take more/less power
How memory is implemented
Whether or not there is a cache

ISA as Contract (1)

Which of the following is considered part of an ISA?

Whether a multiply can operate on data still in memory.
Whether branch prediction is used.

The number of cycles it takes to execute a multiply.

. The number of physical registers the machine has.
Whether instructions can be executed out of order.

moOwere

Y}

ISA as Contract (1)

Which of the following is considered part of an ISA?

>

. Whether a multiply can operate on data still in
memory.

Whether branch prediction is used.

The number of cycles it takes to execute a multiply.
. The number of physical registers the machine has.

Whether instructions can be executed out of order.

mo O W

16

ISA Design Goals

What Makes a Good ISA?

1. Programmability
« Easy to express programs efficiently?
2. Implementability
 Easy to design high-performance implementations?
« More recently: low-power, high-reliability, low-cost
3. Compatibility
« Easy to maintain programmability as languages and
programs evolve?

« x86 (IA32) generations: 8086, 286, 386, 486, Pentium,
PentiumlII, PentiumlIII, Pentium4, Core2...

18

1. Programmability

« Easy to express programs efficiently? For whom?

« Before 1985: human
« Compilers were terrible, often code hand-assembled

« Want high-level coarse-grain instructions
* As similar to high-level language as possible

« After 1985: compiler
« Optimizing compilers generate better code than we do

« Want low-level fine-grain instructions
« Compiler can't tell if two high-level idioms match exactly

Human Programmability

« What makes an ISA easy for a human to program in?
« Proximity to a high-level language (HLL)
 Closing the “semantic gap”
« Semantically heavy (CISC-like) insns that capture complete idioms

I/A\

« “Access array element”, “loop”, “procedure call”

« Example: SPARC save/restore

» Bad example: x86 rep mowvsb (copy string)
 Ridiculous example: VAX insque (insert-into-queue)

« “Semantic clash”;: what if you have many high-level languages?

 Stranger than fiction
« People once thought computers would execute language directly

« Fortunately, never materialized (but keeps coming back around)
« Now we just ask LLM to write the code for us

Today’s Semantic Gap

« Today’s ISAs are actually targeted to one language...
 ...Just so happens that this language is very low level
 The C programming language

« Will ISAs be different when Java/C# become dominant?
* Object-oriented? Probably not
« Support for garbage collection? Maybe
« Support for bounds-checking? Maybe
« Why?
« Smart compilers transform HLL to simple instructions
« Any benefit of tailored ISA is likely small

21

Compiler Optimizations (1)

Compilers do two things
 Code generation

« Translate HLL to machine insns, 1 statement at a time
« Optimization

« Preserve meaning but improve performance

 Active research area, but some standard optimizations

 Register allocation, common sub-expression elimination,
loop-invariant code motion, loop unrolling, function
inlining, code scheduling (to increase insn-level
parallelism), etc.

22

Compiler Optimizations (2)

« Reduce dynamic insn count primarily

« Redundant computation, store things in registers
+ Registers are faster, fewer loads/stores
— ISA can make this difficult by having too few registers

* Also reduce:
« Branches and jumps
« Cache misses

« Dependences between nearby insns (for parallelism)
— ISA can make this difficult by having implicit dependences

« How effective are these?
+ Can give 4X performance over unoptimized code

— Collective wisdom of 40 years (“Proebsting’s Law”: Compiler
Advances Double Computing Power Every 18 Years)

« Funny but ... don’t laugh at 4X performance

ISA as Contract (2)

Which of the following is not considered part of an ISA?

The number of architected registers a machine has.
Whether the compiler can inject prefetch instructions.
Whether the machine supports vector operations.

. Whether a data is stored in the cache after it is fetched
from memory.

The number of bits it takes to encode each instruction.

OO wp

m

LY

ISA as Contract (2)

Which of the following is not considered part of an ISA?

The number of architected registers a machine has.
Whether the compiler can inject prefetch instructions.
Whether the machine supports vector operations.

. Whether a data is stored in the cache afteritis
fetched from memory.

OO W >

m

The number of bits it takes to encode each instruction.

25

2. Implementability

- Every ISA can be implemented
« Not every ISA can be implemented efficiently

« Classic high-performance implementation techniques
 Pipelining, parallel execution, out-of-order execution

« Certain ISA features make these difficult
— Variable instruction lengths/formats: complicate decoding
— Implicit state: complicates dynamic scheduling
— Variable latencies: complicates scheduling

— Difficult to interrupt instructions: complicate many things
« Example: memory copy instruction

3. Compatibility

In many domains, ISA must remain compatible
« IBM’'s 360/370 (the first “ISA family”)
« Another example: Intel’s x86 and Microsoft Windows
« x86 one of the worst designed ISAs EVER, but survives
Backward compatibility
« New processors supporting old programs
« Can't drop features (cumbersome)
 Or, update software/OS to emulate dropped features (slow)
Forward (upward) compatibility
 Old processors supporting new programs
 Include a "CPU ID" so the software can test for features
« Add ISA hints by overloading no-ops (example: x86's PAUSE)
« New firmware/software on old processors to emulate new insn

27

The Compatibility Trap

« Easy compatibility requires forethought
« Temptation: some ISA extension gives 5% perf. gain

« Often: gain diminishes, disappears, or turns to loss
— Must continue to support gadget for eternity

« Example: register windows (SPARC) makes Oo00 difficult

« Compatibility trap door
« How to rid yourself of some ISA mistake in the past?
« Make old insns an “illegal” insn on new machine

« OS handles exception, emulates instruction, returns
 Slow unless extremely uncommon

Aspects of ISAs

	Slide 1: CSE 560 Computer Systems Architecture
	Slide 2: Instruction Set Architecture (ISA)
	Slide 3: ISWhat?
	Slide 4: ISA
	Slide 5: Big Picture (and Review)
	Slide 6: Program Compilation
	Slide 7: Code Review
	Slide 8: Code Review
	Slide 9: Reasoning About Performance
	Slide 10: Maximizing Performance
	Slide 11: What is an ISA?
	Slide 12: What Is An ISA?
	Slide 14: What Is Not In The ISA?
	Slide 15: ISA as Contract (1)
	Slide 16: ISA as Contract (1)
	Slide 17: ISA Design Goals
	Slide 18: What Makes a Good ISA?
	Slide 19: 1. Programmability
	Slide 20: Human Programmability
	Slide 21: Today’s Semantic Gap
	Slide 22: Compiler Optimizations (1)
	Slide 23: Compiler Optimizations (2)
	Slide 24: ISA as Contract (2)
	Slide 25: ISA as Contract (2)
	Slide 26: 2. Implementability
	Slide 27: 3. Compatibility
	Slide 28: The Compatibility Trap
	Slide 29: Aspects of ISAs

