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Instruction Set Architecture (ISA)

• What is an ISA?
• A functional contract

• All ISAs similar at a high level
• Design choices in the details
• 2 “philosophies”: CISC/RISC

• Difference is blurring

• Good ISA…
• Enables high performance

• Importance of Compatibility
• Tricks: binary translation, 

μISAs
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ISWhat?

Question: How have I lived such a productive geek life 

without getting my hands on an ISA?

Likely Answer: Because you are young/started late enough 

not to have suffered through pre-compiler days.

Snarky Answer: Maybe you weren’t as productive as you 

think you were.  ;)
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ISA

How far are you willing to go for good performance?

Ideally: programmers need only write good programs

In reality: programmers want to see/consider the assembly 

to improve performance (compiler choices, etc.)

In some realities: designers consider ISA alterations to 

improve performance further
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Big Picture (and Review)
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Program Compilation

Program written in high-level programming language (C, C++, Java, C#)

• Hierarchical, structured control: loops, functions, conditionals

• Hierarchical, structured data: scalars, arrays, pointers, structures

Assembly language

• Human-readable representation of actual machine instructions

Machine language

• Machine-readable representation of machine instructions

• 1s and 0s (often displayed in hex)
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int sum(int x, int y)

{

  int t = x+y;

  return t;

}

Assembly
_sum:

 pushl %ebp

 movl %esp,%ebp

 movl 12(%ebp),%eax

 addl 8(%ebp),%eax

 movl %ebp,%esp

 popl %ebp

 ret

Code
0x401040 

<sum>:  

  0x55

  0x89

  0xe5

  0x8b

  0x45

   ...

Machine Code

compiler assembler



Code Review

Which of the following statements is false?

A. A compiler needs to be written with both the 
programming language and the target ISA in mind.

B. You can determine the number of static instructions in a 
program by looking at the assembly code.

C. A compiler can take assembled code for one ISA and 
prepare efficient object/machine code for a different ISA.

D. It’s easier to convert assembled code into object/machine 
code than it is to convert C code into assembly code.

E. Compiler optimizations usually take place before the 
assembly code is produced.
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Reasoning About Performance

How long does it take for a program to execute? 

Three factors 

1. How many instructions must execute to complete program

2. How fast is a single cycle

3. How many cycles does each instruction take to execute
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Execution Time = 

    instructions   seconds       cycles

       program     cycle      instruction
x x



Maximizing Performance

Instructions per program:

• Determined by program, compiler, instruction set architecture (ISA)

Seconds per cycle: clock period

• Typical range today: 2ns to 0.25ns

• Reciprocal is frequency: 0.5 GHz to 4 GHz (1 Hz = 1 cycle per sec) 

• Determined by micro-architecture, technology parameters

Cycles per Instruction: CPI

• Typical range today: 2 to 0.5

• Determined by program, compiler, ISA, micro-architecture

Minimum execution time → minimize each term

• Difficult: often pull against one another 
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What is an ISA?
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What Is An ISA?

ISA (instruction set architecture)

• A well-defined hardware/software interface

• The “contract” between software and hardware

• Functional definition of operations, modes, and 
storage locations supported by hardware

• Precise description of how to invoke, access 
them

• Included in ISA:

• Actual machine instructions (instruction set)

• Storage interface (registers and memory)

• Operating modes (user mode vs. supervisor mode)
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What Is Not In The ISA?

• Not in the “contract”: non-functional aspects

• How operations are implemented

• Which operations are fast, which are slow and 
when

• Which operations take more/less power

• How memory is implemented

• Whether or not there is a cache
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ISA as Contract (1)

Which of the following is considered part of an ISA?

A. Whether a multiply can operate on data still in memory.

B. Whether branch prediction is used.

C. The number of cycles it takes to execute a multiply.

D. The number of physical registers the machine has.

E. Whether instructions can be executed out of order.
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ISA Design Goals 
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What Makes a Good ISA?

1. Programmability

• Easy to express programs efficiently?

2. Implementability

• Easy to design high-performance implementations?

• More recently: low-power, high-reliability, low-cost

3. Compatibility

• Easy to maintain programmability as languages and 
programs evolve?

• x86 (IA32) generations: 8086, 286, 386, 486, Pentium, 
PentiumII, PentiumIII, Pentium4, Core2…
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1. Programmability

• Easy to express programs efficiently? For whom?

• Before 1985: human

• Compilers were terrible, often code hand-assembled

• Want high-level coarse-grain instructions

• As similar to high-level language as possible

• After 1985: compiler

• Optimizing compilers generate better code than we do

• Want low-level fine-grain instructions

• Compiler can’t tell if two high-level idioms match exactly 
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Human Programmability
• What makes an ISA easy for a human to program in?

• Proximity to a high-level language (HLL)

• Closing the “semantic gap”

• Semantically heavy (CISC-like) insns that capture complete idioms

• “Access array element”, “loop”, “procedure call”

• Example: SPARC save/restore

• Bad example: x86 rep movsb (copy string)

• Ridiculous example: VAX insque (insert-into-queue)

• “Semantic clash”: what if you have many high-level languages?

• Stranger than fiction
• People once thought computers would execute language directly

• Fortunately, never materialized (but keeps coming back around)

• Now we just ask LLM to write the code for us
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Today’s Semantic Gap

• Today’s ISAs are actually targeted to one language…

• …Just so happens that this language is very low level 

• The C programming language

• Will ISAs be different when Java/C# become dominant?

• Object-oriented?  Probably not

• Support for garbage collection?  Maybe

• Support for bounds-checking?  Maybe

• Why?

• Smart compilers transform HLL to simple instructions

• Any benefit of tailored ISA is likely small
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Compiler Optimizations (1)

Compilers do two things

• Code generation

• Translate HLL to machine insns, 1 statement at a time

• Optimization

• Preserve meaning but improve performance

• Active research area, but some standard optimizations

• Register allocation, common sub-expression elimination,
loop-invariant code motion, loop unrolling, function 
inlining, code scheduling (to increase insn-level 
parallelism), etc.
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Compiler Optimizations (2)
• Reduce dynamic insn count primarily

• Redundant computation, store things in registers

+ Registers are faster, fewer loads/stores

– ISA can make this difficult by having too few registers

• Also reduce:

• Branches and jumps

• Cache misses

• Dependences between nearby insns (for parallelism)

– ISA can make this difficult by having implicit dependences

• How effective are these?

+ Can give 4X performance over unoptimized code

– Collective wisdom of 40 years (“Proebsting’s Law”: Compiler 
Advances Double Computing Power Every 18 Years)

• Funny but … don’t laugh at 4X performance
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ISA as Contract (2)

Which of the following is not considered part of an ISA?

A. The number of architected registers a machine has.

B. Whether the compiler can inject prefetch instructions.

C. Whether the machine supports vector operations.

D. Whether a data is stored in the cache after it is fetched 
from memory.

E. The number of bits it takes to encode each instruction.
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2. Implementability

• Every ISA can be implemented

• Not every ISA can be implemented efficiently

• Classic high-performance implementation techniques

• Pipelining, parallel execution, out-of-order execution

• Certain ISA features make these difficult

– Variable instruction lengths/formats: complicate decoding

– Implicit state: complicates dynamic scheduling

– Variable latencies: complicates scheduling

– Difficult to interrupt instructions: complicate many things

• Example: memory copy instruction
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3. Compatibility

• In many domains, ISA must remain compatible

• IBM’s 360/370 (the first “ISA family”)

• Another example: Intel’s x86 and Microsoft Windows

• x86 one of the worst designed ISAs EVER, but survives

• Backward compatibility

• New processors supporting old programs

• Can’t drop features (cumbersome)

• Or, update software/OS to emulate dropped features (slow) 

• Forward (upward) compatibility

• Old processors supporting new programs

• Include a “CPU ID” so the software can test for features

• Add ISA hints by overloading no-ops (example: x86’s PAUSE)

• New firmware/software on old processors to emulate new insn
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The Compatibility Trap

• Easy compatibility requires forethought

• Temptation: some ISA extension gives 5% perf. gain

• Often: gain diminishes, disappears, or turns to loss

– Must continue to support gadget for eternity

• Example: register windows (SPARC) makes OoO difficult

• Compatibility trap door

• How to rid yourself of some ISA mistake in the past?

• Make old insns an “illegal” insn on new machine

• OS handles exception, emulates instruction, returns

• Slow unless extremely uncommon
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Aspects of ISAs
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