HANDLING MEMORY OPS

Dynamically Scheduling Memory Ops

« Compilers must schedule memory ops conservatively
« Options for hardware:
 Hold loads until all prior stores execute (conservative)

« Execute loads as soon as possible, detect violations (aggressive)

« When a store executes, it checks if any later loads executed too
early (to same address). If so, flush pipeline

 Learn violations over time, selectively reorder (predictive)

Before Wrong(?)

1d r2,4 (sp) 1d r2,4 (sp)

1d r3,8(sp) 1d r3,8(sp)

add r3,r2,rl //stall 1d r5,0(x8) //does r8==sp-?
st rl,0(sp) add r3,r2,rl

1d r5,0(x8) 1d r6,4(xr8) //does r8+4==sp?
1d r6,4 (x8) st rl,0(sp)

sub r5,r6,r4 //stall sub r5,r6,r4

st r4,8(r8) st r4,8(r8)

96

Loads and Stores

Instruction Disp Issue WB Commit
fdiv pl,p2 - p3 2 25
st p4 - [p5] 2 3

N (NP e

1d [p7] - p8

Cycle 3:
e Can Ild [p7]—>p8 execute? (why or why not?)

Loads and Stores

Instruction Disp Issue WB Commit
fdiv pl,p2 - p3 2 25
st p4 - [p5] 2 3

1d [p7] - p8

N (NP e

Aliasing (again)
e p5 ==p7/?
* p6 == p7/?

Loads and Stores

Instruction Disp Issue WB Commit
fdiv pl,p2 - p3 1 2 25
st p4 - [p5] 1 2 3
st p3 - [p6] 2
1d [p7] -~ p8 2
Suppose p5 ==p7 and p6 !=p7

e Can Ild [p7]—>p8 execute? (why or why not?)

Memory Forwarding

« Stores write cache at commit
« Commit is in-order, delayed by all instructions

 Allows stores to be “undone” on branch mis-predictions,
etc.

» Loads read cache
 Early execution of loads is critical

« Forwarding
« Allow store — load communication before store commit

« Conceptually like reg. bypassing, but different
implementation

« Why? Addresses unknown until execute

Forwarding: Store Queue

Store Queue data in
- Holds all in-flight stores address
« CAM: searchable by address

« Age logic: determine Stofe Queup (SQ)
youngest matching store
older than load

data out

load position

_ neat
Store execution ==
Write Store Queue —=lagel

» Address + Data == F tail

Load execution

« Search SQ j—/ 1
 Match? Forward

. Read D$ Data cache

101

Load scheduling

« Store—Load Forwarding:

 Get value from executed (but not comitted) store to load
« Load Scheduling:

« Determine when load can execute with regard to older stores

« Conservative load scheduling:
- All older stores have executed

« Some architectures: split store address / store data
« Only require known address

« Advantage: always safe
« Disadvantage: performance (limits out-of-orderness)

Our example from before

1d [r1l] - b5
1d [r2] — ro6
add r5,r6 - r’/
st r/7 - [r3]
1d 4[rl] - rb5
1d 4[r2] - ro6
add r5,r6 - r’/
st r7 - 4[r3]

With conservative load scheduling,
what can go out of order?

// loop control here

103

Our example from before

1d [pl] - p5S

1

1d [p2] - p6

1

add p5,p6 - p7

1d 4[pl] - p8

1d 4[p2] - p9

add p8,p9 - p4

I d|OO| O B[W[IDN| K

st p4 - 4[p3]

2 wide, conservative scheduling

issue 1 load per cycle

loads take 3 cycles to complete

Cycle 1:
Dispatch insns #1, #2

104

Our example from before

1d [pl] - p5S 2

1d [p2] - p6

add p5,p6 - p7

N[(N|R| &~

1d 4[pl] - p8

1d 4[p2] - p9

add p8,p9 - p4

I d|OO| O B[W[IDN| K

st p4 - 4[p3]

« 2 wide, conservative scheduling Cycle 2:

» issue 1 load per cycle Why don’t we issue #27?
 |oads take 3 cycles to complete

105

Our example from before

1d [pl] - p5S

2

1d [p2] - p6

3

add p5,p6 - p7

1d 4[pl] - p8

1d 4[p2] - p9

W WININ| =M=

add p8,p9 - p4

I d|OO| O B[W[IDN| K

st p4 - 4[p3]

2 wide, conservative scheduling Cycle 3:

issue 1 load per cycle

Why don’t we issue #37?

loads take 3 cycles to complete Why don’t we issue #4?

106

Our example from before

1d [pl] - p5S 2

1d [p2] - p6 3

add p5,p6 - p7

1d 4[pl] - p8

1d 4[p2] - p9

add p8,p9 - p4

I N[O U] B[W | N]| PP
LRI W W NIN|R| M=

st p4 - 4[p3]

« 2 wide, conservative scheduling Cycle 4:

» issue 1 load per cycle Why don’t we issue #57?
 |oads take 3 cycles to complete

107

Our example from before

1d [pl] - p5S

2

5

6

1d [p2] - p6

3

6

add p5,p6 - p7

1d 4[pl] - p8

1d 4[p2] - p9

add p8,p9 - p4

I d|OO| O B[W[IDN| K

PR W W NI N| ==

st p4 - 4[p3]

2 wide, conservative scheduling
issue 1 load per cycle
loads take 3 cycles to complete

Cycle 6:

Finally some action!

108

Our example from before

1d [pl] - p5S

1d [p2] - p6

add p5,p6 - p7

1d 4[pl] - p8

1d 4[p2] - p9

add p8,p9 - p4

I d|OO| O B[W[IDN| K

PR W W NI N| ==

st p4 - 4[p3]

2 wide, conservative scheduling
issue 1 load per cycle
loads take 3 cycles to complete

Cycle 7:
Getting somewhere....

109

Our example from before

1d [pl] - p5S 2 5 6
1d [p2] - p6 3 6 7
add p5,p6 - p7 6 7 8
st p7 - [p3] 7 8

1d 4[pl] - p8 8

1d 4[p2] - p9

add p8,p9 - p4

LRI W W NIN|R| M=

I d|OO| O B[W[IDN| K

st p4 - 4[p3]

« 2 wide, conservative scheduling Cycle 8:
 issue 1 load per cycle Ftc...
 |oads take 3 cycles to complete

110

Our example from before

1d [pl] - p5S

1d [p2] - p6

add p5,p6 - p7

| N| O U
O | 0| N[O

1d 4[pl] - p8

O RV N OO | W(N

1d 4[p2] - p9

add p8,p9 - p4

LRI W W NIN|R| M=

I d|OO| O B[W[IDN| K

st p4 - 4[p3]

« 2 wide, conservative scheduling Cycle 9:
 issue 1 load per cycle Ftc...
 |oads take 3 cycles to complete

111

Our example from before

1 |14 [pl] - p5 1 2 5 6
2 |1d [p2] - p6 1 3 6 7
3 |add p5,p6 - p7 2 6 7 8
4 |st p7 - [p3] 2 7 8 9
5 |1d 4[pl] - p8 3 8 11 12
6 |1d 4[p2] - p9 3 9 12
7 |add p8,p9 - p4 il 12
8 |st p4 - 4[p3] 4

« 2 wide, conservative scheduling Cycle 12:

* issue 1 load per cycle Yawn...

loads take 3 cycles to complete

112

Our example from before

1 |1d [pl] - p5 1 2 5 &
2 |1d [p2] - p6 1 3 6 7
3 |add p5,p6 - p7 2 6 7 8
4 |st p7 - [p3] 2 7 8 9
5 |1d 4[pl] — p8 3 8 11 12
6 |1d 4[p2] — p9 3 9 12 13
7 |add p8,p9 - p4 i} 12 13
8 st p4 - 4[p3] 4 13

« 2 wide, conservative scheduling Cycle 13:

 issue 1 load per cycle Stretch. ..

loads take 3 cycles to complete

113

Our example from before

1 |1d [pl] - p5 1 2 5 &
2 |1d [p2] - p6 1 3 6 7
3 |add p5,p6 - p7 2 6 7 8
4 |st p7 - [p3] 2 7 8 9
5 |1d 4[pl] - p8 3 8 11 12
6 |1d 4[p2] - p9 3 9 12 13
7 |add p8,p9 - p4 4 12 13 14
8 st p4 - 4[p3] 4 13 14

* 2 wide, conservative scheduling | cycle 14:

 issue 1 load per cycle 777777 ...

loads take 3 cycles to complete

114

Our example from before

1 (1d [pl] - p5 1 2 5 6
2 |1d [p2] - p6 1 3 6 7
3 |add p5,p6 - p7 2 6 7 8
4 |st p7 - [p3] 2 7 8 9
5 |1d 4[pl] - p8 3 8 11 12
6 |1d 4[p2] - p9 3 9 12 13
7 |add p8,p9 - p4 4 12 13 14
8 st p4 - 4[p3] 4 13 14 15
2 wide, conservative scheduling Cycle 15:

issue 1 load per cycle
loads take 3 cycles to complete

2-wide 000 = 1-wide inorder
I am going to cry.

115

Our example from before

1 |1d [pl] - p5 1 2 5 6
2 |1d [p2] - p6 1 3 6 7
3 |add p5,p6 - p7 2 6 7 8
4 |st p7 - [p3] 2 7 8 9
5 |1d 4[pl] - p8 3 8 11 12
6 |1d 4[p2] - p9 3 9 12 13
7 |add p8,p9 - p4 q 12 13 14
8 st p4 - 4[p3] 4 13 14 15

2 wide, conservative scheduling
issue 1 load per cycle
loads take 3 cycles to complete

What was #5 waiting for??

Can I speculate?

116

Load Speculation

« Speculation requires two things.....
« Detection of mis-speculations
« How can we do this?

« Recovery from mis-speculations
« Squash from offending load
« Saw how to squash from branches: same method

Load Queue

o flush?
- Detects Id ordering violations store 1.

« Execute load: write addr to LQ position

load queue [LQ
 Also note any store
forwarded from
head EBLIEESS

- Execute store: search LQ —1—==

 Younger load with same == age

addr? _tail—==—1 tail
« Didn't forward from younger

store? [

Data Cache

Store Queue + Load Queue

 Store Queue: handles forwarding
» Written by stores (@ execute)
« Searched by loads (@ execute)
« Read SQ when you write to the data cache (@ commit)

» Load Queue: detects ordering violations
« Written by loads (@ execute)
« Searched by stores (@ execute)

« Both together

» Allows aggressive load scheduling
» Stores don't constrain load execution

Our example from before

1d [pl] - p5S

2

1d [p2] - p6

3

add p5,p6 - p7

1d 4[pl] - p8

1d 4[p2] - p9

add p8,p9 - p4

I d|OO| O B[W[IDN| K

st p4 - 4[p3]

PR W W NI N| ==
H

2 wide, aggressive scheduling Cycle 4:

issue 1 load per cycle

Speculatively execute #5

loads take 3 cycles to complete before the store (#4).

120

Our example from before

1d [pl] - p5S

2 5

1d [p2] - p6

3

add p5,p6 - p7

1d 4[pl] - p8

1d 4[p2] - p9

add p8,p9 - p4

I d|OO| O B[W[IDN| K

st p4 - 4[p3]

PR W W NI N| ==
H

2 wide, aggressive scheduling Cycle 5:

issue 1 load per cycle

Speculatively execute #6

loads take 3 cycles to complete before the store (#4).

121

Our example from before

1 |(1d [pl] - p5 1 2 5 6
2 |1d [p2] - p6 1 3 6 7
3 |add p5,p6 - p7 2 6 7 8
4 |st p7 - [p3] 2 7 8 9
5 (1d 4[pl] - p8 3 4. 7 9
6 |1d 4[p2] - p9 3 5 8 10
7 |add p8,p9 - p4 4 8) 10
8 |st p4 - 4[p3] 4 9 10 11

2 wide, aggressive scheduling

issue 1 load per cycle

loads take 3 cycles to complete

Fast forward:
4 cycles faster

Actually ooo this time!

122

Aggressive Load Scheduling

« Allows loads to issue before older stores
 Increases out-of-orderness
+ When no conflict, increases performance
- Conflict > squash = worse performance than waiting

« Some loads might forward from stores
 Always aggressive will squash a lot

« Can we have our cake AND eat it too?

Predictive Load Scheduling

* Predict which loads must wait for stores

« Fool me once, shame on you—fool me twice?
« Loads default to aggressive

« Keep table of load PCs that have been caused squashes
« Schedule these conservatively

+ Simple predictor
— Makes “bad” loads wait for a// older stores: not great

« More complex predictors used in practice
 Predict which stores loads should wait for

Out of Order: Window Size

« Scheduling scope = 000 window size
« Larger = better
« Constrained by physical registers (#preq)
« ROB roughly limited by #preg = ROB size + #logical registers
* Big register file = hard/slow
 Constrained by issue queue
« Limits number of un-executed instructions
« CAM = can’t make big (power + area)
« Constrained by load + store queues
« Limit humber of loads/stores
 CAMs
« Active area of research: scaling window sizes
« Usefulness of large window: limited by branch prediction

» 5% branch mis-prediction rate: 1 in 20 branches, 1 in 100
insns

Out of Order: Benefits

 Allows speculative re-ordering
 Loads / stores
« Branch prediction
» Schedule can change due to cache misses
 Different schedule optimal from on cache hit
« Done by hardware

« Compiler may want different schedule for different hw
configs
« Hardware has only its own configuration to deal with

Static vs. Dynamic Scheduling

 If we can do this in software...
 ...why build complex (slow-clock, high-power) hardware?
+ Performance portability
« Don’t want to recompile for new machines
+ More information available
« Memory addresses, branch directions, cache misses
+ More registers available
« Compiler may not have enough to schedule well
+ Speculative memory operation re-ordering
« Compiler must be conservative, hardware can speculate
— But compiler has a larger scope
« Compiler does as much as it can (not much)
« Hardware does the rest

Out of Order: Top 5 Things to Know

Register renaming

« How to perform it and how to recover it
Commit

 Precise state (ROB)

« How/when registers are freed
Issue/Select

« Wakeup: CAM

» Choose N oldest ready instructions
Stores

* Write at commit

« Forward to loads via SQ

Loads

« Conservative/aggressive/predictive scheduling
 Violation detection via LQ

Summary: Dynamic Scheduling

Dynamic scheduling
 Totally in the hardware
« Also called “out-of-order execution” (0O00)
Fetch many instructions into instruction window
« Use branch prediction to speculate past (multiple) branches
 Flush pipeline on branch misprediction
Rename to avoid false dependencies
Execute instructions as soon as possible
» Register dependencies are known
« Handling memory dependencies more tricky
“Commit” instructions in order
« Anything strange happens pre-commit, just flush the pipeline
Current machines: 100+ instruction scheduling window

	Slide 95: HANDLING MEMORY OPs
	Slide 96: Dynamically Scheduling Memory Ops
	Slide 97: Loads and Stores
	Slide 98: Loads and Stores
	Slide 99: Loads and Stores
	Slide 100: Memory Forwarding
	Slide 101: Forwarding: Store Queue
	Slide 102: Load scheduling
	Slide 103: Our example from before
	Slide 104: Our example from before
	Slide 105: Our example from before
	Slide 106: Our example from before
	Slide 107: Our example from before
	Slide 108: Our example from before
	Slide 109: Our example from before
	Slide 110: Our example from before
	Slide 111: Our example from before
	Slide 112: Our example from before
	Slide 113: Our example from before
	Slide 114: Our example from before
	Slide 115: Our example from before
	Slide 116: Our example from before
	Slide 117: Load Speculation
	Slide 118: Load Queue
	Slide 119: Store Queue + Load Queue
	Slide 120: Our example from before
	Slide 121: Our example from before
	Slide 122: Our example from before
	Slide 123: Aggressive Load Scheduling
	Slide 124: Predictive Load Scheduling
	Slide 125: Out of Order: Window Size
	Slide 126: Out of Order: Benefits
	Slide 127: Static vs. Dynamic Scheduling
	Slide 128: Out of Order: Top 5 Things to Know
	Slide 129: Summary: Dynamic Scheduling

