
HANDLING MEMORY OPS

95

Dynamically Scheduling Memory Ops
• Compilers must schedule memory ops conservatively

• Options for hardware:

• Hold loads until all prior stores execute (conservative)

• Execute loads as soon as possible, detect violations (aggressive)

• When a store executes, it checks if any later loads executed too
early (to same address). If so, flush pipeline

• Learn violations over time, selectively reorder (predictive)

96

Before

ld r2,4(sp)

ld r3,8(sp)

add r3,r2,r1 //stall

st r1,0(sp)

ld r5,0(r8)

ld r6,4(r8)

sub r5,r6,r4 //stall

st r4,8(r8)

Wrong(?)

ld r2,4(sp)

ld r3,8(sp)

ld r5,0(r8) //does r8==sp?

add r3,r2,r1

ld r6,4(r8) //does r8+4==sp?

st r1,0(sp)

sub r5,r6,r4

st r4,8(r8)

Loads and Stores

97

Instruction Disp Issue WB Commit

1

1

2 25

2

2

2 3

Cycle 3:
• Can ld [p7]→p8 execute? (why or why not?)

fdiv p1,p2 → p3

st p4 → [p5]

st p3 → [p6]

ld [p7] → p8

Loads and Stores

98

Instruction Disp Issue WB Commit

1

1

2 25

2

2

2 3

Aliasing (again)
• p5 == p7 ?
• p6 == p7 ?

fdiv p1,p2 → p3

st p4 → [p5]

st p3 → [p6]

ld [p7] → p8

Loads and Stores

99

Instruction Disp Issue WB Commit

1

1

2 25

2

2

2 3

fdiv p1,p2 → p3

st p4 → [p5]

st p3 → [p6]

ld [p7] → p8

Suppose p5 == p7 and p6 != p7

• Can ld [p7]→p8 execute? (why or why not?)

Memory Forwarding
• Stores write cache at commit

• Commit is in-order, delayed by all instructions

• Allows stores to be “undone” on branch mis-predictions,
etc.

• Loads read cache

• Early execution of loads is critical

• Forwarding

• Allow store → load communication before store commit

• Conceptually like reg. bypassing, but different
implementation

• Why? Addresses unknown until execute

100

Forwarding: Store Queue
Store Queue

• Holds all in-flight stores

• CAM: searchable by address

• Age logic: determine
youngest matching store
older than load

Store execution

• Write Store Queue

• Address + Data

Load execution

• Search SQ

• Match? Forward

• Read D$

101

valueaddress
==
==
==
==
==
==
==
==

age

Data cache

head

tail

load position

address
data in

data out

Store Queue (SQ)

Load scheduling

• Store→Load Forwarding:

• Get value from executed (but not comitted) store to load

• Load Scheduling:

• Determine when load can execute with regard to older stores

• Conservative load scheduling:

• All older stores have executed

• Some architectures: split store address / store data

• Only require known address

• Advantage: always safe

• Disadvantage: performance (limits out-of-orderness)

102

Our example from before
ld [r1] → r5

ld [r2] → r6

add r5,r6 → r7

st r7 → [r3]

ld 4[r1] → r5

ld 4[r2] → r6

add r5,r6 → r7

st r7 → 4[r3]

// loop control here

103

With conservative load scheduling,
what can go out of order?

Our example from before

104

Disp Issue WB Commit

ld [p1] → p5 1

ld [p2] → p6 1

add p5,p6 → p7

st p7 → [p3]

ld 4[p1] → p8

ld 4[p2] → p9

add p8,p9 → p4

st p4 → 4[p3]

1

2

3

4

5

6

7

8

Cycle 1:
Dispatch insns #1, #2

• 2 wide, conservative scheduling

• issue 1 load per cycle

• loads take 3 cycles to complete

Our example from before

• 2 wide, conservative scheduling

• issue 1 load per cycle

• loads take 3 cycles to complete

105

Disp Issue WB Commit

ld [p1] → p5 1 2 5

ld [p2] → p6 1

add p5,p6 → p7 2

st p7 → [p3] 2

ld 4[p1] → p8

ld 4[p2] → p9

add p8,p9 → p4

st p4 → 4[p3]

1

2

3

4

5

6

7

8

Cycle 2:
Why don’t we issue #2?

Our example from before

• 2 wide, conservative scheduling

• issue 1 load per cycle

• loads take 3 cycles to complete

106

Disp Issue WB Commit

ld [p1] → p5 1 2 5

ld [p2] → p6 1 3 6

add p5,p6 → p7 2

st p7 → [p3] 2

ld 4[p1] → p8 3

ld 4[p2] → p9 3

add p8,p9 → p4

st p4 → 4[p3]

1

2

3

4

5

6

7

8

Cycle 3:
Why don’t we issue #3?
Why don’t we issue #4?

Our example from before

• 2 wide, conservative scheduling

• issue 1 load per cycle

• loads take 3 cycles to complete

107

Disp Issue WB Commit

ld [p1] → p5 1 2 5

ld [p2] → p6 1 3 6

add p5,p6 → p7 2

st p7 → [p3] 2

ld 4[p1] → p8 3

ld 4[p2] → p9 3

add p8,p9 → p4 4

st p4 → 4[p3] 4

1

2

3

4

5

6

7

8

Cycle 4:
Why don’t we issue #5?

Our example from before

• 2 wide, conservative scheduling

• issue 1 load per cycle

• loads take 3 cycles to complete

108

Disp Issue WB Commit

ld [p1] → p5 1 2 5 6

ld [p2] → p6 1 3 6

add p5,p6 → p7 2 6 7

st p7 → [p3] 2

ld 4[p1] → p8 3

ld 4[p2] → p9 3

add p8,p9 → p4 4

st p4 → 4[p3] 4

1

2

3

4

5

6

7

8

Cycle 6:
Finally some action!

Our example from before

• 2 wide, conservative scheduling

• issue 1 load per cycle

• loads take 3 cycles to complete

109

Disp Issue WB Commit

ld [p1] → p5 1 2 5 6

ld [p2] → p6 1 3 6 7

add p5,p6 → p7 2 6 7

st p7 → [p3] 2 7 8

ld 4[p1] → p8 3

ld 4[p2] → p9 3

add p8,p9 → p4 4

st p4 → 4[p3] 4

1

2

3

4

5

6

7

8

Cycle 7:
Getting somewhere….

Our example from before

• 2 wide, conservative scheduling

• issue 1 load per cycle

• loads take 3 cycles to complete

110

Disp Issue WB Commit

ld [p1] → p5 1 2 5 6

ld [p2] → p6 1 3 6 7

add p5,p6 → p7 2 6 7 8

st p7 → [p3] 2 7 8

ld 4[p1] → p8 3 8 11

ld 4[p2] → p9 3

add p8,p9 → p4 4

st p4 → 4[p3] 4

1

2

3

4

5

6

7

8

Cycle 8:
Etc...

Our example from before

• 2 wide, conservative scheduling

• issue 1 load per cycle

• loads take 3 cycles to complete

111

Disp Issue WB Commit

ld [p1] → p5 1 2 5 6

ld [p2] → p6 1 3 6 7

add p5,p6 → p7 2 6 7 8

st p7 → [p3] 2 7 8 9

ld 4[p1] → p8 3 8 11

ld 4[p2] → p9 3 9 12

add p8,p9 → p4 4

st p4 → 4[p3] 4

1

2

3

4

5

6

7

8

Cycle 9:
Etc...

Our example from before

• 2 wide, conservative scheduling

• issue 1 load per cycle

• loads take 3 cycles to complete

112

Disp Issue WB Commit

ld [p1] → p5 1 2 5 6

ld [p2] → p6 1 3 6 7

add p5,p6 → p7 2 6 7 8

st p7 → [p3] 2 7 8 9

ld 4[p1] → p8 3 8 11 12

ld 4[p2] → p9 3 9 12

add p8,p9 → p4 4 12 13

st p4 → 4[p3] 4

1

2

3

4

5

6

7

8

Cycle 12:
Yawn…

Our example from before

• 2 wide, conservative scheduling

• issue 1 load per cycle

• loads take 3 cycles to complete

113

Disp Issue WB Commit

ld [p1] → p5 1 2 5 6

ld [p2] → p6 1 3 6 7

add p5,p6 → p7 2 6 7 8

st p7 → [p3] 2 7 8 9

ld 4[p1] → p8 3 8 11 12

ld 4[p2] → p9 3 9 12 13

add p8,p9 → p4 4 12 13

st p4 → 4[p3] 4 13 14

1

2

3

4

5

6

7

8

Cycle 13:
Stretch…

Our example from before

• 2 wide, conservative scheduling

• issue 1 load per cycle

• loads take 3 cycles to complete

114

Disp Issue WB Commit

ld [p1] → p5 1 2 5 6

ld [p2] → p6 1 3 6 7

add p5,p6 → p7 2 6 7 8

st p7 → [p3] 2 7 8 9

ld 4[p1] → p8 3 8 11 12

ld 4[p2] → p9 3 9 12 13

add p8,p9 → p4 4 12 13 14

st p4 → 4[p3] 4 13 14

1

2

3

4

5

6

7

8

Cycle 14:
Zzzzzz…

Our example from before

• 2 wide, conservative scheduling

• issue 1 load per cycle

• loads take 3 cycles to complete

115

Disp Issue WB Commit

ld [p1] → p5 1 2 5 6

ld [p2] → p6 1 3 6 7

add p5,p6 → p7 2 6 7 8

st p7 → [p3] 2 7 8 9

ld 4[p1] → p8 3 8 11 12

ld 4[p2] → p9 3 9 12 13

add p8,p9 → p4 4 12 13 14

st p4 → 4[p3] 4 13 14 15

1

2

3

4

5

6

7

8

Cycle 15:
2-wide ooo = 1-wide inorder
I am going to cry.

Our example from before

• 2 wide, conservative scheduling

• issue 1 load per cycle

• loads take 3 cycles to complete

116

Disp Issue WB Commit

ld [p1] → p5 1 2 5 6

ld [p2] → p6 1 3 6 7

add p5,p6 → p7 2 6 7 8

st p7 → [p3] 2 7 8 9

ld 4[p1] → p8 3 8 11 12

ld 4[p2] → p9 3 9 12 13

add p8,p9 → p4 4 12 13 14

st p4 → 4[p3] 4 13 14 15

1

2

3

4

5

6

7

8

What was #5 waiting for??

Can I speculate?

Load Speculation

• Speculation requires two things…..

• Detection of mis-speculations

• How can we do this?

• Recovery from mis-speculations

• Squash from offending load

• Saw how to squash from branches: same method

117

Load Queue

• Detects ld ordering violations

• Execute load: write addr to LQ

• Also note any store
forwarded from

• Execute store: search LQ

• Younger load with same
addr?

• Didn’t forward from younger
store?

118

==
==
==
==
==
==
==
==

Data Cache

head

tail

load queue (LQ)

address
==
==
==
==
==
==
==
==

tail

head

age

store

position

flush?

SQ

Store Queue + Load Queue

• Store Queue: handles forwarding

• Written by stores (@ execute)

• Searched by loads (@ execute)

• Read SQ when you write to the data cache (@ commit)

• Load Queue: detects ordering violations

• Written by loads (@ execute)

• Searched by stores (@ execute)

• Both together

• Allows aggressive load scheduling

• Stores don’t constrain load execution

119

Our example from before

• 2 wide, aggressive scheduling

• issue 1 load per cycle

• loads take 3 cycles to complete

120

Disp Issue WB Commit

ld [p1] → p5 1 2 5

ld [p2] → p6 1 3 6

add p5,p6 → p7 2

st p7 → [p3] 2

ld 4[p1] → p8 3 4 7

ld 4[p2] → p9 3

add p8,p9 → p4 4

st p4 → 4[p3] 4

1

2

3

4

5

6

7

8

Cycle 4:
Speculatively execute #5
before the store (#4).

Our example from before

• 2 wide, aggressive scheduling

• issue 1 load per cycle

• loads take 3 cycles to complete

121

Disp Issue WB Commit

ld [p1] → p5 1 2 5

ld [p2] → p6 1 3 6

add p5,p6 → p7 2

st p7 → [p3] 2

ld 4[p1] → p8 3 4 7

ld 4[p2] → p9 3 5 8

add p8,p9 → p4 4

st p4 → 4[p3] 4

1

2

3

4

5

6

7

8

Cycle 5:
Speculatively execute #6
before the store (#4).

Our example from before

• 2 wide, aggressive scheduling

• issue 1 load per cycle

• loads take 3 cycles to complete

122

Disp Issue WB Commit

ld [p1] → p5 1 2 5 6

ld [p2] → p6 1 3 6 7

add p5,p6 → p7 2 6 7 8

st p7 → [p3] 2 7 8 9

ld 4[p1] → p8 3 4 7 9

ld 4[p2] → p9 3 5 8 10

add p8,p9 → p4 4 8 9 10

st p4 → 4[p3] 4 9 10 11

1

2

3

4

5

6

7

8

Fast forward:
4 cycles faster
Actually ooo this time!

Aggressive Load Scheduling

• Allows loads to issue before older stores

• Increases out-of-orderness

+ When no conflict, increases performance

- Conflict → squash → worse performance than waiting

• Some loads might forward from stores

• Always aggressive will squash a lot

• Can we have our cake AND eat it too?

123

Predictive Load Scheduling

• Predict which loads must wait for stores

• Fool me once, shame on you—fool me twice?

• Loads default to aggressive

• Keep table of load PCs that have been caused squashes

• Schedule these conservatively

+ Simple predictor

− Makes “bad” loads wait for all older stores: not great

• More complex predictors used in practice

• Predict which stores loads should wait for

124

Out of Order: Window Size
• Scheduling scope = ooo window size

• Larger = better
• Constrained by physical registers (#preg)

• ROB roughly limited by #preg = ROB size + #logical registers
• Big register file = hard/slow

• Constrained by issue queue
• Limits number of un-executed instructions
• CAM = can’t make big (power + area)

• Constrained by load + store queues
• Limit number of loads/stores
• CAMs
• Active area of research: scaling window sizes

• Usefulness of large window: limited by branch prediction
• 5% branch mis-prediction rate: 1 in 20 branches, 1 in 100

insns

125

Out of Order: Benefits

• Allows speculative re-ordering

• Loads / stores

• Branch prediction

• Schedule can change due to cache misses

• Different schedule optimal from on cache hit

• Done by hardware

• Compiler may want different schedule for different hw
configs

• Hardware has only its own configuration to deal with

126

Static vs. Dynamic Scheduling
• If we can do this in software…

• …why build complex (slow-clock, high-power) hardware?

+ Performance portability

• Don’t want to recompile for new machines

+ More information available

• Memory addresses, branch directions, cache misses

+ More registers available

• Compiler may not have enough to schedule well

+ Speculative memory operation re-ordering

• Compiler must be conservative, hardware can speculate

– But compiler has a larger scope

• Compiler does as much as it can (not much)

• Hardware does the rest

127

Out of Order: Top 5 Things to Know
• Register renaming

• How to perform it and how to recover it
• Commit

• Precise state (ROB)
• How/when registers are freed

• Issue/Select
• Wakeup: CAM
• Choose N oldest ready instructions

• Stores
• Write at commit
• Forward to loads via SQ

• Loads
• Conservative/aggressive/predictive scheduling
• Violation detection via LQ

128

Summary: Dynamic Scheduling
• Dynamic scheduling

• Totally in the hardware

• Also called “out-of-order execution” (OoO)

• Fetch many instructions into instruction window

• Use branch prediction to speculate past (multiple) branches

• Flush pipeline on branch misprediction

• Rename to avoid false dependencies

• Execute instructions as soon as possible

• Register dependencies are known

• Handling memory dependencies more tricky

• “Commit” instructions in order

• Anything strange happens pre-commit, just flush the pipeline

• Current machines: 100+ instruction scheduling window

129

	Slide 95: HANDLING MEMORY OPs
	Slide 96: Dynamically Scheduling Memory Ops
	Slide 97: Loads and Stores
	Slide 98: Loads and Stores
	Slide 99: Loads and Stores
	Slide 100: Memory Forwarding
	Slide 101: Forwarding: Store Queue
	Slide 102: Load scheduling
	Slide 103: Our example from before
	Slide 104: Our example from before
	Slide 105: Our example from before
	Slide 106: Our example from before
	Slide 107: Our example from before
	Slide 108: Our example from before
	Slide 109: Our example from before
	Slide 110: Our example from before
	Slide 111: Our example from before
	Slide 112: Our example from before
	Slide 113: Our example from before
	Slide 114: Our example from before
	Slide 115: Our example from before
	Slide 116: Our example from before
	Slide 117: Load Speculation
	Slide 118: Load Queue
	Slide 119: Store Queue + Load Queue
	Slide 120: Our example from before
	Slide 121: Our example from before
	Slide 122: Our example from before
	Slide 123: Aggressive Load Scheduling
	Slide 124: Predictive Load Scheduling
	Slide 125: Out of Order: Window Size
	Slide 126: Out of Order: Benefits
	Slide 127: Static vs. Dynamic Scheduling
	Slide 128: Out of Order: Top 5 Things to Know
	Slide 129: Summary: Dynamic Scheduling

