
CSE 560
Computer Systems Architecture

Domain-Specific Accelerators

Slides originally developed by Steven Harris

1

Motivation

The von Neumann bottleneck is 

an architectural throughput 

limitation due to a limited 

transfer rate between memory 

and the CPU

It can cause the CPU to wait idle 

for long periods due to the low-

speed memory transactions

It is also referred to as the 

“memory wall”

2Von-Neumann Architecture is licensed under CC BY-SA-NC.

Von-Neumann Bottleneck Mitigation

A few implementation suggestions for improving performance 
include:

• Introduction of cache between the CPU and main memory

• Define separate access paths for data and instructions

• Branch Predictor algorithms and logic

• On-chip scratchpad memory
3

Instruction 
Memory

Data 
Memory

ALU

Input/Output

Control 
Unit

Von-Neumann Processor Journey (Thus far)

• 1st, 2nd, 3rd, & 4th - level caches
• 512-bit SIMD floating-point units
• 15+ stage pipelines
• Branch prediction
• Out-of-order execution
• Speculative prefetching
• Multithreading

• Multiprocessing

• E.g., Intel Core i9-13900K

4

Processor Trends – Performance Plateaus

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/ 5

Performance Walls

Power

• Increased frequency leads to increased power density

• Difficult to mitigate dynamic/static power dissipation

Memory

• Compute bandwidth continues to outpace memory bandwidth

• Data migration can become the limiting factor on performance

Instruction Level Parallelism

• Increasingly difficult to find parallelism in single-instruction streams

• Diminishing returns on additional ILP hardware

6

1 2

3 4

5 6

https://computersciencewiki.org/index.php/Architecture_of_the_central_processing_unit_(CPU)
https://creativecommons.org/licenses/by-nc-sa/3.0/


This Unit: Domain-Specific Accelerators

• Survey of Hardware Accelerators (Taxonomy)

• Architecture

• Software Aspects

• Host Coupling

• General Aspects

• Domain-Specific Accelerators

• Graphics Engines

• The Pipeline

• Shaders

• GPU Architectural Features

• Other uses for GPUs
7

Common Accelerators

8
Harris, Steven. "Investigating Single Precision Floating General Matrix Multiply in Heterogeneous Hardware." (2020).

Hardware Accelerators

Peccerillo, Biagio, et al. "A survey on hardware accelerators: Taxonomy, trends, challenges, and perspectives." 
Journal of Systems Architecture (2022): 102561.

9

Hardware Accelerator Architecture

Peccerillo, Biagio, et al. "A survey on hardware accelerators: Taxonomy, trends, challenges, and perspectives." 
Journal of Systems Architecture (2022): 102561.

10

Architecture -- Enumerated

Peccerillo, Biagio, et al. "A survey on hardware accelerators: Taxonomy, trends, challenges, and perspectives." 
Journal of Systems Architecture (2022): 102561.

11

Special-purpose Resources

Peccerillo, Biagio, et al. "A survey on hardware accelerators: Taxonomy, trends, challenges, and perspectives." 
Journal of Systems Architecture (2022): 102561.

12

7 8

9 10

11 12



Graphics Engines

Heterogeneous Multiprocessor

• Many processing elements (PE), many threads per PE

• Collections of threads execute in lock-step (SIMD-like)

• Hide latency to memory by switching threads

13

What is an FPGA?

• Field-programmable gate array

• Array of logic gates

• Programmable in the “field”

• Basically, custom logic on a 
chip

• Enables hardware design

• Custom data path

• Can be very fast and energy 
efficient

• Challenge is now to architect 
design

• HW has many degrees of 
freedom

Systolic Array

15
Cho et al., “Efficient Systolic-Array Redundancy Architecture for Offline/Online Repair,” Electronics, 9(2):338, 2020. 

3D Stacked Memory Technology

16

(Credit: Ivan Kuten)

2.5D GPU System

17Cho et al., DOI: 10.1109/ECTC.2016.84

Software Aspects

Peccerillo, Biagio, et al. "A survey on hardware accelerators: Taxonomy, trends, challenges, and perspectives." 
Journal of Systems Architecture (2022): 102561.

18

13 14

15 16

17 18



Software Aspects -- Enumerated

Peccerillo, Biagio, et al. "A survey on hardware accelerators: Taxonomy, trends, challenges, and perspectives." 
Journal of Systems Architecture (2022): 102561.

19

Host Coupling

Peccerillo, Biagio, et al. "A survey on hardware accelerators: Taxonomy, trends, challenges, and perspectives." 
Journal of Systems Architecture (2022): 102561.

20

Host Coupling -- Enumerated

Peccerillo, Biagio, et al. "A survey on hardware accelerators: Taxonomy, trends, challenges, and perspectives." 
Journal of Systems Architecture (2022): 102561.

21

Traditional – Via I/O Bus

22

Intel HARP - Hardware Accelerator Research Program

• FPGA tied to last-level cache on Xeon

• Cache coherent interconnect

23

Bump In The Wire

24

19 20

21 22

23 24



General Aspects

Peccerillo, Biagio, et al. "A survey on hardware accelerators: Taxonomy, trends, challenges, and perspectives." 
Journal of Systems Architecture (2022): 102561.

25

Domain-Specific Accelerators

Peccerillo, Biagio, et al. "A survey on hardware accelerators: Taxonomy, trends, challenges, and perspectives." 
Journal of Systems Architecture (2022): 102561.

26

General Aspects – Domain

Peccerillo, Biagio, et al. "A survey on hardware accelerators: Taxonomy, trends, challenges, and perspectives." 
Journal of Systems Architecture (2022): 102561.

27

Digital Signal Processor

28

• Harvard Architecture

• Access 2 operands / cycle

• Single cycle MAC

• Excellent signal processing 

performance

Apple M1 Chip

29

Apple M2 Chip

30

25 26

27 28

29 30



Hardware Accelerators

Peccerillo, Biagio, et al. "A survey on hardware accelerators: Taxonomy, trends, challenges, and perspectives." 
Journal of Systems Architecture (2022): 102561.

31

Graphics Engines

32

Outline
• History of Consumer Level Graphics

• Motivation

• The Modern Graphics Pipeline

• Shader Programs

• GPU Architectural Features 

• Other uses for GPUs

33

Based on “From Shader Code to a Teraflop: How GPU Shader Cores 

Work”, By Kayvon Fatahalian, Stanford University

In the Beginning…

34

Simple Graphics Modes

35

Bitmap Mode Character Mode

The 3D Reckoning 

36

31 32

33 34

35 36



Motivating Problem

• Convert 3D models into something that can be drawn on 
screen

• Consumer displays easily hit 4K resolution (8mil+ pixels)

• Most applications target 30+ frames per second minimum

• It is infeasible to do this on even the fastest single threaded 
devices today

37

Graphics Engines

Conceptual model

• Apply simple sequential programs to all items in a set

• Eg, Vertices, Faces, Fragments, Pixels 

• Many programs (called shaders) connected in series to 
form a graphics pipeline

38

Shader Program Example 

40

Executing a Shader

41

CPU-lite

42

More Room=More Cores

43

37 38

40 41

42 43



Scaling up 

44

Flynn’s Taxonomy
• Proposed by Michael Flynn in 1966

• SISD – single instruction, single data

• Traditional uniprocessor

• SIMD – single instruction, multiple data

• Execute the same instruction on many data elements

• Vector machines, graphics engines

• MIMD – multiple instruction, multiple data

• Each processor executes its own instructions

• Multicores are all built this way

• SPMD – single program, multiple data (extension 
proposed by Frederica Darema)

• MIMD machine, each node is executing the same code

• MISD – multiple instruction, single data

• Systolic array
45

SIMD Cores

46

Why Not Both?

47

What’s Missing?

48

Divergence

49

44 45

46 47

48 49



Divergence

50

Divergence

51

Feeding Cores with Data

• Recall that we removed the hardware that allows the 
CPU to avoid stalls

• OOE, branch predictors and prefetching all gone

• Question remains: How do we avoid execution stalls? 

52

Cheating Stalls

53

Managing In-Flight Instruction Stream

54

When Interleaving Isn’t Enough

• Interleaving was great in the 00’s

• GeForce 6: 2005

• 500MHz core clock 

• 36GB/s memory bandwidth

• 16 Pixel Processors 

• GeForce 3000: 2020 

• 1700MHz core clock (OC: 2 GHz)

• 935GB/s memory bandwidth

• 82 SMs, 4 cores per SM

• Plus extras

55

50 51

52 53

54 55



Caches are Back

• Reintroduce L1 and L2 caches

• Intends to capture locality of data

56

Shared L1 Cache Shared L1 Cache Shared L1 Cache

L2 Cache 

Main Memory

Other Uses for GPUs

• Wide Read -> Compute -> Write paradigm is actually 
very useful for other applications 

• Non-render image processing

• Fluid Simulations

• Scientific computing

• Machine Learning 

58

At their core these are all matrix Multiplies 

56 58


	Slide 1: CSE 560 Computer Systems Architecture
	Slide 2: Motivation
	Slide 3: Von-Neumann Bottleneck Mitigation
	Slide 4: Von-Neumann Processor Journey (Thus far)
	Slide 5: Processor Trends – Performance Plateaus
	Slide 6: Performance Walls
	Slide 7: This Unit: Domain-Specific Accelerators
	Slide 8: Common Accelerators
	Slide 9: Hardware Accelerators
	Slide 10: Hardware Accelerator Architecture
	Slide 11: Architecture -- Enumerated
	Slide 12: Special-purpose Resources
	Slide 13: Graphics Engines
	Slide 14: What is an FPGA?
	Slide 15: Systolic Array
	Slide 16: 3D Stacked Memory Technology
	Slide 17: 2.5D GPU System
	Slide 18: Software Aspects
	Slide 19: Software Aspects -- Enumerated
	Slide 20: Host Coupling
	Slide 21: Host Coupling -- Enumerated
	Slide 22: Traditional – Via I/O Bus
	Slide 23: Intel HARP - Hardware Accelerator Research Program
	Slide 24: Bump In The Wire
	Slide 25: General Aspects
	Slide 26: Domain-Specific Accelerators
	Slide 27: General Aspects – Domain
	Slide 28: Digital Signal Processor
	Slide 29: Apple M1 Chip
	Slide 30: Apple M2 Chip
	Slide 31: Hardware Accelerators
	Slide 32: Graphics Engines
	Slide 33: Outline
	Slide 34: In the Beginning…
	Slide 35: Simple Graphics Modes
	Slide 36: The 3D Reckoning 
	Slide 37: Motivating Problem
	Slide 38: Graphics Engines
	Slide 40: Shader Program Example 
	Slide 41: Executing a Shader
	Slide 42: CPU-lite
	Slide 43: More Room=More Cores
	Slide 44: Scaling up 
	Slide 45: Flynn’s Taxonomy
	Slide 46: SIMD Cores
	Slide 47: Why Not Both?
	Slide 48: What’s Missing?
	Slide 49: Divergence
	Slide 50: Divergence
	Slide 51: Divergence
	Slide 52: Feeding Cores with Data
	Slide 53: Cheating Stalls
	Slide 54: Managing In-Flight Instruction Stream
	Slide 55: When Interleaving Isn’t Enough
	Slide 56: Caches are Back
	Slide 58: Other Uses for GPUs

