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Motivation

The von Neumann bottleneck is 

an architectural throughput 

limitation due to a limited 

transfer rate between memory 

and the CPU

It can cause the CPU to wait idle 

for long periods due to the low-

speed memory transactions

It is also referred to as the 

“memory wall”

2Von-Neumann Architecture is licensed under CC BY-SA-NC.

Von-Neumann Bottleneck Mitigation

A few implementation suggestions for improving performance 
include:

• Introduction of cache between the CPU and main memory

• Define separate access paths for data and instructions

• Branch Predictor algorithms and logic

• On-chip scratchpad memory
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Von-Neumann Processor Journey (Thus far)

• 1st, 2nd, 3rd, & 4th - level caches
• 512-bit SIMD floating-point units
• 15+ stage pipelines
• Branch prediction
• Out-of-order execution
• Speculative prefetching
• Multithreading

• Multiprocessing

• E.g., Intel Core i9-13900K
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Processor Trends – Performance Plateaus

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/ 5

Performance Walls

Power

• Increased frequency leads to increased power density

• Difficult to mitigate dynamic/static power dissipation

Memory

• Compute bandwidth continues to outpace memory bandwidth

• Data migration can become the limiting factor on performance

Instruction Level Parallelism

• Increasingly difficult to find parallelism in single-instruction streams

• Diminishing returns on additional ILP hardware
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https://computersciencewiki.org/index.php/Architecture_of_the_central_processing_unit_(CPU)
https://creativecommons.org/licenses/by-nc-sa/3.0/


This Unit: Domain-Specific Accelerators

• Survey of Hardware Accelerators (Taxonomy)

• Architecture

• Software Aspects

• Host Coupling

• General Aspects

• Domain-Specific Accelerators

• Graphics Engines

• The Pipeline

• Shaders

• GPU Architectural Features

• Other uses for GPUs
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Common Accelerators

8
Harris, Steven. "Investigating Single Precision Floating General Matrix Multiply in Heterogeneous Hardware." (2020).

Hardware Accelerators

Peccerillo, Biagio, et al. "A survey on hardware accelerators: Taxonomy, trends, challenges, and perspectives." 
Journal of Systems Architecture (2022): 102561.
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Hardware Accelerator Architecture

Peccerillo, Biagio, et al. "A survey on hardware accelerators: Taxonomy, trends, challenges, and perspectives." 
Journal of Systems Architecture (2022): 102561.
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Architecture -- Enumerated

Peccerillo, Biagio, et al. "A survey on hardware accelerators: Taxonomy, trends, challenges, and perspectives." 
Journal of Systems Architecture (2022): 102561.
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Special-purpose Resources

Peccerillo, Biagio, et al. "A survey on hardware accelerators: Taxonomy, trends, challenges, and perspectives." 
Journal of Systems Architecture (2022): 102561.
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Graphics Engines

Heterogeneous Multiprocessor

• Many processing elements (PE), many threads per PE

• Collections of threads execute in lock-step (SIMD-like)

• Hide latency to memory by switching threads
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What is an FPGA?

• Field-programmable gate array

• Array of logic gates

• Programmable in the “field”

• Basically, custom logic on a 
chip

• Enables hardware design

• Custom data path

• Can be very fast and energy 
efficient

• Challenge is now to architect 
design

• HW has many degrees of 
freedom

Systolic Array
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Cho et al., “Efficient Systolic-Array Redundancy Architecture for Offline/Online Repair,” Electronics, 9(2):338, 2020. 

3D Stacked Memory Technology
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(Credit: Ivan Kuten)

2.5D GPU System

17Cho et al., DOI: 10.1109/ECTC.2016.84

Software Aspects

Peccerillo, Biagio, et al. "A survey on hardware accelerators: Taxonomy, trends, challenges, and perspectives." 
Journal of Systems Architecture (2022): 102561.
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Software Aspects -- Enumerated

Peccerillo, Biagio, et al. "A survey on hardware accelerators: Taxonomy, trends, challenges, and perspectives." 
Journal of Systems Architecture (2022): 102561.
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Host Coupling

Peccerillo, Biagio, et al. "A survey on hardware accelerators: Taxonomy, trends, challenges, and perspectives." 
Journal of Systems Architecture (2022): 102561.
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Host Coupling -- Enumerated

Peccerillo, Biagio, et al. "A survey on hardware accelerators: Taxonomy, trends, challenges, and perspectives." 
Journal of Systems Architecture (2022): 102561.
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Traditional – Via I/O Bus
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Intel HARP - Hardware Accelerator Research Program

• FPGA tied to last-level cache on Xeon

• Cache coherent interconnect
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Bump In The Wire
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General Aspects

Peccerillo, Biagio, et al. "A survey on hardware accelerators: Taxonomy, trends, challenges, and perspectives." 
Journal of Systems Architecture (2022): 102561.
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Domain-Specific Accelerators

Peccerillo, Biagio, et al. "A survey on hardware accelerators: Taxonomy, trends, challenges, and perspectives." 
Journal of Systems Architecture (2022): 102561.
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General Aspects – Domain

Peccerillo, Biagio, et al. "A survey on hardware accelerators: Taxonomy, trends, challenges, and perspectives." 
Journal of Systems Architecture (2022): 102561.
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Digital Signal Processor
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• Harvard Architecture

• Access 2 operands / cycle

• Single cycle MAC

• Excellent signal processing 

performance

Apple M1 Chip

29

Apple M2 Chip
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Hardware Accelerators

Peccerillo, Biagio, et al. "A survey on hardware accelerators: Taxonomy, trends, challenges, and perspectives." 
Journal of Systems Architecture (2022): 102561.
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Graphics Engines
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Outline
• History of Consumer Level Graphics

• Motivation

• The Modern Graphics Pipeline

• Shader Programs

• GPU Architectural Features 

• Other uses for GPUs
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Based on “From Shader Code to a Teraflop: How GPU Shader Cores 

Work”, By Kayvon Fatahalian, Stanford University

In the Beginning…
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Simple Graphics Modes
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Bitmap Mode Character Mode

The 3D Reckoning 
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Motivating Problem

• Convert 3D models into something that can be drawn on 
screen

• Consumer displays easily hit 4K resolution (8mil+ pixels)

• Most applications target 30+ frames per second minimum

• It is infeasible to do this on even the fastest single threaded 
devices today
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Graphics Engines

Conceptual model

• Apply simple sequential programs to all items in a set

• Eg, Vertices, Faces, Fragments, Pixels 

• Many programs (called shaders) connected in series to 
form a graphics pipeline
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Shader Program Example 
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Executing a Shader
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CPU-lite
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More Room=More Cores
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Scaling up 
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Flynn’s Taxonomy
• Proposed by Michael Flynn in 1966

• SISD – single instruction, single data

• Traditional uniprocessor

• SIMD – single instruction, multiple data

• Execute the same instruction on many data elements

• Vector machines, graphics engines

• MIMD – multiple instruction, multiple data

• Each processor executes its own instructions

• Multicores are all built this way

• SPMD – single program, multiple data (extension 
proposed by Frederica Darema)

• MIMD machine, each node is executing the same code

• MISD – multiple instruction, single data

• Systolic array
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SIMD Cores
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Why Not Both?
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What’s Missing?
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Divergence
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Divergence
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Divergence
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Feeding Cores with Data

• Recall that we removed the hardware that allows the 
CPU to avoid stalls

• OOE, branch predictors and prefetching all gone

• Question remains: How do we avoid execution stalls? 
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Cheating Stalls
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Managing In-Flight Instruction Stream
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When Interleaving Isn’t Enough

• Interleaving was great in the 00’s

• GeForce 6: 2005

• 500MHz core clock 

• 36GB/s memory bandwidth

• 16 Pixel Processors 

• GeForce 3000: 2020 

• 1700MHz core clock (OC: 2 GHz)

• 935GB/s memory bandwidth

• 82 SMs, 4 cores per SM

• Plus extras
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Caches are Back

• Reintroduce L1 and L2 caches

• Intends to capture locality of data
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Shared L1 Cache Shared L1 Cache Shared L1 Cache

L2 Cache 

Main Memory

Other Uses for GPUs

• Wide Read -> Compute -> Write paradigm is actually 
very useful for other applications 

• Non-render image processing

• Fluid Simulations

• Scientific computing

• Machine Learning 
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At their core these are all matrix Multiplies 
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