
10/17/2024

1

Basic Memory Array Structure

• Number of entries
– n bits for lookup → 2n entries

– Example: 1024 entries, 10 bit address

– Decoder changes n-bit address to
2n bit “one-hot” signal

• Size of entries
– Width of data accessed

– Here: 256 bits (32 bytes)

0

1

1021

1022

1023

3

1024 entry x 256bit SRAM

256 bits
read from cache

10 bits

2

62

offset:
Which byte?
(32 possible)

Caches: Finding Data via Indexing
• Basic cache: array of cache lines (or blocks)

– Here: 32KB cache (1024 entries, 32B blocks)
– “Hash table in hardware”

• To find entry: decode part of address
– Which part?
– 32-bit address
– 32B blocks → 5 lowest bits locate byte in

block = offset bits
– 1024 entry→ 10 bits find entry = index bits
– Note: nothing says index must be these bits
– But these work best (think about why)

0

1

1021

1022

1023

2

3

[4:0][31:15] [14:5] <<

256 bits

data

32 bit address

index:
Which entry?
(1K possible)

1
 b

it

10 bits

1024 entry x 256bit SRAM

63

Knowing that You Found It: Tags
• Each entry can hold one of 217 blocks

– All blocks with same index bit pattern

• How to know which if any is currently
there?
– To each entry attach tag and valid bit
– Compare entry tag to address tag bits

• No need to match index bits (why?)

• Lookup algorithm
– Read entry indicated by index bits
– “Hit” if tag matches and valid bit is set
– Otherwise, a “miss”. Go to next level…

0

1

1021

1022

1023

2

3

[4:0]tag [31:15]

data

index [14:5] <<

address

=

hit?
64

Handling a Cache Miss

• What if requested data isn’t in the cache?
– How does it get in there?

• Cache controller: finite state machine
– Remembers miss address
– Accesses next level of memory
– Waits for response
– Writes data/tag into proper locations

– All of this happens on the fill path
– Sometimes called backside

67

Cache Performance Equation
• Access: read or write to cache
• Hit: desired data found in cache
• Miss: desired data not found in cache

– Must get from another component
– No notion of “miss” in register file

• Fill: action of placing data into cache

• %miss (miss-rate): #misses / #accesses
• thit: time to read data from (write data to)

cache
• tmiss: time to read data into cache

• Performance metric: average access time
tavg = thit + %miss x tmiss

Cache

thit

tmiss

%miss

68

CPI Calculation with Cache Misses
• Parameters

– Simple pipeline with base CPI of 1

– Instruction mix: 30% loads/stores

– I$: %miss = 2%, tmiss = 10 cycles

– D$: %miss = 10%, tmiss = 10 cycles

• What is new CPI?
– CPII$ =

– CPID$ =

– CPInew =

69

62 63

64 67

68 69

10/17/2024

2

CPI Calculation with Cache Misses
• Parameters

– Simple pipeline with base CPI of 1
– Instruction mix: 30% loads/stores
– I$: %miss = 2%, tmiss = 10 cycles
– D$: %miss = 10%, tmiss = 10 cycles

• What is new CPI?
– CPII$ = %missI$ x tmiss = 0.02 x 10 cycles = 0.2 cycle
– CPID$ = %load/storex %missD$ x tmissD$ = 0.3 x 0.1 x 10 cycles

 = 0.3 cycle
– CPInew = CPI + CPII$ + CPID$ = 1+0.2+0.3 = 1.5

70

Measuring Cache Performance

• Ultimate metric is tavg

– Cache capacity and circuits roughly determines thit

– Lower-level memory structures determine tmiss

– Measure %miss

• Hardware performance counters

• Simulation

71

Capacity and Performance
• Simplest way to reduce %miss: increase capacity

+ Miss rate decreases monotonically
• “Working set”: insns/data program is actively using
• Diminishing returns

– However thit increases
• Latency proportional to

sqrt(capacity)

– tavg ?

• Given capacity, manipulate %miss by changing organization

Cache Capacity

%miss
“working set” size

75

Block Size

• Given capacity, manipulate %miss by changing organization

• One option: increase block size

• Exploit spatial locality

• Notice index/offset bits change

• Tag remain the same

• Ramifications

+ Reduce %miss (up to a point)

+ Reduce tag overhead (why?)

– Potentially useless data transfer

– Premature replacement of useful data

– Fragmentation

0

1

510

511

2

[5:0][31:15]

data

[14:6]

address

=

hit?

<<

512*512bit

SRAM

9-bit

block size

Effect of Block Size on Miss Rate
• Two effects on miss rate

+ Spatial prefetching (good)

• For blocks with adjacent addresses

• Turns miss/miss into miss/hit pairs

– Interference (bad)

• For blocks with non-adjacent
addresses (but in adjacent entries)

• Turns hits into misses by disallowing
simultaneous residence

• Consider entire cache as one big block

• Both effects always present

• Spatial prefetching dominates initially

• Depends on size of the cache

• Good block size is 16–128B
• Program dependent

Block Size

%miss

Block Size and Miss Penalty
• Does increasing block size increase tmiss?

• Don’t larger blocks take longer to read, transfer, and fill?

• They do, but…

• tmiss of an isolated miss is not affected
• Critical Word First / Early Restart (CRF/ER)
• Requested word fetched first, pipeline restarts immediately
• Remaining words in block transferred/filled in the

background

• tmiss’es of a cluster of misses will suffer
• Reads/transfers/fills of two misses can’t happen at the same

time
• Latencies can start to pile up
• This is a bandwidth problem (more later)

70 71

75 76

80 81

10/17/2024

3

Set-Associativity

• Block can reside in one of few entries

• Entry groups called sets

• Each entry in set called a way

• This is 2-way set-associative (SA)

• 1-way → direct-mapped (DM)

• 1-set → fully-associative (FA)

+ Reduces conflicts

– Increases latencyhit:

• additional tag match & muxing

• Note: valid bit not shown

512

513

1022

1023

514

data

<<

address

=

hit?

0

1

510

511

2

=

ways

se
ts

[4:0][31:14] [13:5]

9-bit

associativity

Set-Associativity

Lookup algorithm

• Use index bits to find set

• Read data/tags in all ways in parallel

• Any (match and valid bit), Hit

• Notice tag/index/offset bits

• Only 9-bit index (versus 10-bit
for direct mapped)

• Notice block numbering

512

513

1022

1023

514

data

<<

address

=

hit?

0

1

510

511

2

=

ways

se
ts

[4:0][31:14] [13:5]

9-bit

associativity

Replacement Policies

• Associative caches present a new design choice
• On cache miss, which block in set to replace (kick out)?

• Some options
• Random
• FIFO (first-in first-out)
• LRU (least recently used)

• Fits with temporal locality, LRU = least likely to be used in
future

• NMRU (not most recently used)
• An easier to implement approximation of LRU
• Is LRU for 2-way set-associative caches

• Belady’s: replace block that will be used furthest in
future
• Unachievable optimum

Associativity and Performance

• Higher associative caches

+ Have better (lower) %miss

• Diminishing returns

– However thit increases

• The more associative, the slower

• What about tavg?

• Block-size and number of sets should be powers of two

• Makes indexing easier (just rip bits out of the address)

• 3-way set-associativity? No problem

Associativity

%miss ~5

Classifying Misses: 3C Model (Hill)
• Divide cache misses into three categories

• Compulsory (cold): never seen this address before

• Would miss even in infinite cache

• Capacity: miss caused because cache is too small
• Would miss even in fully associative cache

• Identify? Consecutive accesses to block separated by access to
at least N other distinct blocks (N is number of entries in cache)

• Conflict: miss caused because cache associativity is too low

• Identify? All other misses

• (Coherence): miss due to external invalidations

• Only in shared memory multiprocessors (later)

• Calculated by multiple simulations

• Simulate infinite cache, fully-associative cache, normal cache

• Subtract to find each count

Miss Rate: ABC
• Why do we care about 3C miss model?

• So that we know what to do to eliminate misses
• If you don’t have conflict misses, increasing

associativity won’t help

• Associativity
+ Decreases conflict misses
– Increases latencyhit

• Block size
– Increases conflict/capacity misses (fewer entries)
+ Decreases compulsory/capacity misses (spatial locality)
• No significant effect on latencyhit

• Capacity
+ Decreases capacity misses
– Increases latencyhit

83 84

87 88

89 90

10/17/2024

4

Reducing Conflict Misses: Victim Buffer

• Conflict misses: not enough associativity

• High-associativity is expensive, but also rarely needed

• 3 blocks mapping to same 2-way set and accessed (XYZ)+

• Victim buffer (VB): small fully-associative cache

• Sits on I$/D$ miss path

• Small so very fast (e.g., 8 entries)

• Blocks kicked out of I$/D$ placed in VB

• On miss, check VB: hit? Place block back in I$/D$

• 8 extra ways, shared among all sets

+ Only a few sets will need it at any given time

+ Very effective in practice

• Does VB reduce %miss or latencymiss?

I$/D$

L2

VB

Overlapping Misses: Lockup Free Cache
• Lockup free: allows other accesses while miss is pending

• Consider: load [r1]→r2; load [r3]→r4; add r2,r4 →r5

• Handle misses in parallel

• “memory-level parallelism”

• Makes sense for…

• Processors that can go ahead despite D$ miss (out-of-order)

• Implementation: miss status holding register (MSHR)

• Remember: miss address, chosen entry, requesting instruction

• When miss returns know where to put block, who to inform

• Common scenario: “hit under miss”

• Handle hits while miss is pending

• Easy

• Less common, but common enough: “miss under miss”

• A little trickier, but common anyway

• Requires multiple MSHRs: search to avoid frame conflicts

Software Restructuring: Data

• Capacity misses: poor spatial or temporal locality

• Several code restructuring techniques to improve both

– Compiler must know that restructuring preserves semantics

Loop interchange: spatial locality

• Example: row-major matrix: X[i][j] followed by X[i][j+1]

• Poor code: X[i][j] followed by X[i+1][j]
for (j = 0; j<NCOLS; j++)

 for (i = 0; i<NROWS; i++)

 sum += X[i][j]; // say

• Better code

for (i = 0; i<NROWS; i++)

 for (j = 0; j<NCOLS; j++)

 sum += X[i][j];

Software Restructuring: Data
• Loop blocking: temporal locality

• Poor code
for (k=0; k<NITERATIONS; k++)

 for (i=0; i<NELEMS; i++)

 sum += X[i]; // say

• Better code
• Cut array into CACHE_SIZE chunks
• Run all phases on one chunk, proceed to next chunk
for (i=0; i<NELEMS; i+=CACHE_SIZE)

 for (k=0; k<NITERATIONS; k++)

 for (ii=0; ii<i+CACHE_SIZE-1; ii++)

 sum += X[ii];

– Assumes you know CACHE_SIZE, do you?

• Loop fusion: similar, but for multiple consecutive loops

Software Restructuring: Code
• Compiler can layout code for temporal and spatial locality

• If (a) { code1; } else { code2; } code3;

• But, code2 case never happens (say, error condition)

• Fewer taken branches, too
• Intra-procedure, inter-procedure

Better
locality

Better
locality

Prefetching
Prefetching: put blocks in cache proactively/speculatively

• Key: anticipate upcoming miss addresses accurately

• Can do in software or hardware

• Simple example: next block prefetching

• Miss on addr X → anticipate miss on X+block-size

+ Works for insns: sequential execution

+ Works for data: arrays

• Timeliness: initiate prefetches sufficiently in advance

• Coverage: prefetch for as many misses as possible

• Accuracy: don’t pollute with unnecessary data

• It evicts useful data

I$/D$

L2

prefetch
logic

91 92

93 94

95 96

10/17/2024

5

Software Prefetching
• Use a special “prefetch” instruction

• Tells the hardware to bring in data, doesn’t actually read it

• Just a hint

• Inserted by programmer or compiler

 Example:

for (i = 0; i<NROWS; i++)

 for (j = 0; j<NCOLS; j+=BLOCK_SIZE) {

 __builtin_prefetch(&X[i][j]+BLOCK_SIZE);

 for (jj=j; jj<j+BLOCK_SIZE-1; jj++)

 sum += x[i][jj];

 }

• Multiple prefetches bring multiple blocks in parallel

• Using lockup-free caches

• “Memory-level” parallelism

Hardware Prefetching

• What to prefetch?

• Stride-based sequential prefetching

• Can also do N blocks ahead to hide more latency

+Simple, works for sequential things: insns, array data

+Works better than doubling the block size

• Address-prediction

• Needed for non-sequential data: lists, trees, etc.

• Use a hardware table to detect strides, common patterns

• When to prefetch?

• On every reference?

• On every miss?

More Advanced Address Prediction

• “Next-block” prefetching is easy, what about other options?

• Correlating predictor

• Large table stores (miss-addr → next-miss-addr) pairs

• On miss, access table to find out what will miss next

• It’s OK for this table to be large and slow

• Content-directed or dependence-based prefetching

• Greedily chases pointers from fetched blocks

• Jump pointers

• Augment data structure with prefetch pointers

• Make it easier to prefetch: cache-conscious layout/malloc

• Lays lists out serially in memory, so they look like arrays

• Active area of research

Write Issues

• So far we have looked at reading from cache

• Instruction fetches, loads

• What about writing into cache

• Stores, not an issue for instruction caches (why they
are simpler)

• Several new issues

• Tag/data access

• Write-through vs. write-back

• Write-allocate vs. write-not-allocate

• Hiding write miss latency

Tag/Data Access
• Reads: read tag and data in parallel

• Tag mis-match → data is garbage (OK, stall until good
data arrives)

• Writes: read tag, write data in parallel?

• Tag mis-match → clobbered data (oops)

• For associative caches, which way was written into?

• Writes are a pipelined two step (multi-cycle) process

• Step 1: match tag

• Step 2: write to matching way

• Bypass (with address check) to avoid load stalls

• May introduce structural hazards

Write Propagation

When to propagate new value to (lower level) memory?

• Option #1: Write-through: immediately

• On hit, update cache

• Immediately send the write to the next level

• Option #2: Write-back: when block is replaced

• Requires additional “dirty” bit per block
• Replace clean block: no extra traffic

• Replace dirty block: extra “writeback” of block

+ Writeback-buffer (WBB): keep it off critical path

1. Send “fill” request to next-level

2. While waiting, write dirty block to buffer

3. When new blocks arrives, put it into cache

4. Write buffer contents to next-level

2
1

4

$

Next-level-$

WBB

3

98 99

100 101

102 103

10/17/2024

6

Write Propagation Comparison
• Write-through

– Requires additional bus bandwidth
• Consider repeated write hits

– Next level must handle small writes (1, 2, 4, 8-bytes)
+ No need for dirty bits in cache
+ No need to handle “writeback” operations

• Simplifies miss handling (no write-back buffer)

• Sometimes used for L1 caches (for example, by IBM)

• Write-back
+ Key advantage: uses less bandwidth
• Reverse of other pros/cons above
• Used by Intel and AMD
• 2nd-level and beyond are generally write-back caches

How is a write miss handled?

Write Miss Handling

Write-allocate: fill block from
next level, then write it

+ Decreases read misses (next

read to block will hit)

– Requires additional bandwidth

• Commonly used (especially
with write-back caches)

Write-non-allocate: just
write to next level, no
allocate

– Potentially more read

misses

+ Uses less bandwidth

• Use with write-through

$

Next-level-$

write (miss)

write (hit)

write propagated down

$

Next-level-$

write (miss)

write (hit & allocated up)

write not
propagated

mark dirty

105

Memory Performance Equation

• Access: read or write to M

• Hit: desired data found in M

• Miss: desired data not found in M

• Must get from another (slower) component

• Fill: action of placing data in M

• %miss (miss-rate): #misses / #accesses

• thit: time to read data from (write data to) M

• tmiss: time to read data into M

• Performance metric

• tavg: average access time

tavg = thit + %miss x tmiss

CPU

M

thit

tmiss

%miss

Hierarchy Performance

tavg =

tavg-M1

thit-M1 +(%miss-M1x tmiss-M1)

thit-M1 +(%miss-M1x tavg-M2)

thit-M1 +(%miss-M1x(thit-M2 +(%miss-M2x tmiss-M2)))

thit-M1 +(%miss-M1x(thit-M2 +(%miss-M2x tavg-M3)))

…

tmiss-M3 = tavg-M4

CPU

M1

M2

M3

M4

tmiss-M2 = tavg-M3

tmiss-M1 = tavg-M2

tavg = tavg-M1

Performance Calculation with $ Hierarchy

• Parameters

• Reference stream: all loads

• D$: thit = 1ns, %miss = 5%

• L2: thit = 10ns, %miss = 20% (local miss rate)

• Main memory: thit = 50ns

• What is tavgD$ without an L2?

• tmissD$ =

• tavgD$ =

• What is tavgD$ with an L2?

• tmissD$ =

• tavgL2 =

• tavgD$ =

Performance Calculation with $ Hierarchy

• Parameters

• Reference stream: all loads

• D$: thit = 1ns, %miss = 5%

• L2: thit = 10ns, %miss = 20% (local miss rate)

• Main memory: thit = 50ns

• What is tavgD$ without an L2?

• tmissD$ = thitM

• tavgD$ = thitD$ + %missD$x thitM = 1ns+(0.05x50ns) = 3.5ns

• What is tavgD$ with an L2?

• tmissD$ = tavgL2

• tavgL2 = thitL2+%missL2x thitM = 10ns+(0.2x50ns) = 20ns

• tavgD$ = thitD$ + %missD$x tavgL2 = 1ns+(0.05x20ns) = 2ns

104 105

106 107

108 109

10/17/2024

7

Designing a Cache Hierarchy
• For any memory component: thit vs. %miss tradeoff

• Upper components (I$, D$) emphasize low thit

• Frequent access → thit important

• tmiss is not bad → %miss less important

• Low capacity/associativity (to reduce thit)

• Small-medium block-size (to reduce conflicts)

• Moving down (L2, L3) emphasis turns to %miss

• Infrequent access → thit less important

• tmiss is bad → %miss important

• High capacity/associativity/block size (to reduce %miss)

Memory Hierarchy Parameters

• Some other design parameters

• Split vs. unified insns/data

• Inclusion vs. exclusion vs. nothing

• On-chip, off-chip, or partially on-chip?

Parameter I$/D$ L2 L3 Main Memory

thit 2ns 10ns 30ns 100ns

tmiss 10ns 30ns 100ns 10ms (10M ns)

Capacity 8KB–64KB 256KB–8MB 2–16MB 1-8GBs

Block size 16B–64B 32B–128B 32B-256B NA

Associativity 1–4 4–16 4-16 NA

Split vs. Unified Caches

Split I$/D$: insns and data in different caches

• To minimize structural hazards and thit

• Larger unified I$/D$ would be slow, 2nd port even slower

• Optimize I$ for wide output (superscalar), no writes

Unified L2, L3: insns and data together

• To minimize %miss

+ Fewer capacity misses: unused insn capacity used for data

– More conflict misses: insn/data conflicts

• A much smaller effect in large caches

• Insn/data structural hazards are rare: simultaneous I$/D$ miss

• Go even further: unify L2, L3 of multiple cores in a multi-core

Hierarchy: Inclusion versus Exclusion

• Inclusion

• A block in the L1 is always in the L2

• Good for write-through L1s (why?)

• Exclusion

• Block is either in L1 or L2 (never both)

• Good if L2 is small relative to L1

• Example: AMD’s Duron 64KB L1s, 64KB L2

• Non-inclusion

• No guarantees

Summary
• Average access time of a memory component

• latencyavg = latencyhit + %miss x latencymiss

• low latencyhit and %miss in one structure = hard → hierarchy

• Memory hierarchy

• Cache (SRAM) → memory (DRAM) → swap (Disk)

• Smaller, faster, more expensive → bigger, slower, cheaper

• Cache ABCs (associativity, block size, capacity)

• 3C miss model: compulsory, capacity, conflict

• Performance optimizations

• %miss: prefetching

• latencymiss: victim buffer, critical-word-first, lockup-free design

• Write issues

• Write-back vs. write-through

• write-allocate vs. write-no-allocate

110 111

112 113

114

	Slide 62: Basic Memory Array Structure
	Slide 63: Caches: Finding Data via Indexing
	Slide 64: Knowing that You Found It: Tags
	Slide 67: Handling a Cache Miss
	Slide 68: Cache Performance Equation
	Slide 69: CPI Calculation with Cache Misses
	Slide 70: CPI Calculation with Cache Misses
	Slide 71: Measuring Cache Performance
	Slide 75: Capacity and Performance
	Slide 76: Block Size
	Slide 80: Effect of Block Size on Miss Rate
	Slide 81: Block Size and Miss Penalty
	Slide 83: Set-Associativity
	Slide 84: Set-Associativity
	Slide 87: Replacement Policies
	Slide 88: Associativity and Performance
	Slide 89: Classifying Misses: 3C Model (Hill)
	Slide 90: Miss Rate: ABC
	Slide 91: Reducing Conflict Misses: Victim Buffer
	Slide 92: Overlapping Misses: Lockup Free Cache
	Slide 93: Software Restructuring: Data
	Slide 94: Software Restructuring: Data
	Slide 95: Software Restructuring: Code
	Slide 96: Prefetching
	Slide 98: Software Prefetching
	Slide 99: Hardware Prefetching
	Slide 100: More Advanced Address Prediction
	Slide 101: Write Issues
	Slide 102: Tag/Data Access
	Slide 103: Write Propagation
	Slide 104: Write Propagation Comparison
	Slide 105: Write Miss Handling
	Slide 106: Memory Performance Equation
	Slide 107: Hierarchy Performance
	Slide 108: Performance Calculation with $ Hierarchy
	Slide 109: Performance Calculation with $ Hierarchy
	Slide 110: Designing a Cache Hierarchy
	Slide 111: Memory Hierarchy Parameters
	Slide 112: Split vs. Unified Caches
	Slide 113: Hierarchy: Inclusion versus Exclusion
	Slide 114: Summary

