
CSE 560
Computer Systems Architecture

Branch Prediction

1

This Unit: (Scalar In-Order) Pipelining

• Principles of pipelining

• Effects of overhead and hazards

• Pipeline diagrams

• Data hazards

• Stalling and bypassing

• Control hazards

• Branch prediction

• Predication (later)

2

CPUMem I/O

System software

AppApp App

Control Dependences and
Branch Prediction

3

What About Branches?

Control hazards options

• Could just stall to wait for branch outcome (two-cycle penalty)

• Fetch past branch insns before branch outcome is known

• Default: assume “not-taken” (at fetch, can’t tell it’s a branch)

4

PC I$

Register

File

s1 s2 d

+

4

<<

2

PC

A

B

IR

O

B

IR

PC

IR

S

X

F D X

Big Idea: Speculative Execution

• Speculation: “risky transactions on chance of profit”

• Speculative execution

• Execute before all parameters known with certainty

• Correct speculation

+Avoid stall, improve performance

• Incorrect speculation (mis-speculation)

– Must abort/flush/squash incorrect insns

– Must undo incorrect changes (recover pre-speculation state)

the game: [%correct x gain] – [(1–%correct) x penalty]

• Control speculation: speculation aimed at control hazards

• Are these the correct instructions to execute next?

5

Branch Recovery

Branch recovery: what to do when branch is actually taken

• Insns that will be written into F/D and D/X are wrong

• Flush them, i.e., replace them with nops

+ They haven’t changed permanent state yet (regfile, DMem)

– 2-cycle penalty for taken branches

6

PC I$

Register

File

s1 s2 d

+

4

<<

2

nopnop

PC

A

B

IR

O

B

IR

PC

IR

S

X

F D X

Branch Performance

• Back of the envelope calculation

• Branch: 20%, load: 20%, store: 10%, other: 50%

• Say, 75% of branches are taken

• CPI = 1 + 20% x 75% x 2 =
 1 + 0.20 x 0.75 x 2 = 1.3

– Branches cause 30% slowdown

• Even worse with deeper pipelines

How do we reduce slowdown?

1. Reduce misprediction penalty (resolve branches sooner?)

2. Reduce misprediction frequency

7

Fewer Mispredictions: Branch Prediction

Dynamic branch prediction: hardware guesses outcome
• Start fetching from guessed address
• Flush on mis-prediction

10

PC I$

Register

File
S

X

s1 s2 d

+

4

<<

2

TG

PC

IR

TG

PC

A

B

IR

O

B

IR

nopnop

BP

<>

F D X

Branch Prediction Performance

• Parameters

• Branch: 20%, load: 20%, store: 10%, other: 50%

• 75% of branches are taken

• Dynamic branch prediction

• Branches predicted with 95% accuracy

• Was:

• CPI = 1 + 20% x 75% x 2 = 1.3

• Now:

• CPI = 1 + 20% x 5% x 2 = 1.02

11

Dynamic Branch Prediction Components

Step #1: is it a branch?

• Easy after decode...

Step #2: is the branch taken or not taken?

• Direction predictor (conditional branches only)

• Predicts taken/not-taken

Step #3: if the branch is taken, where does it go?

• Easy after decode…

12

regfile

DI

B

P

F D

X
M W

Branch Direction Prediction
• Learn from past, predict the future

• Record the past in a hardware structure
• Direction predictor (DIRP)

• Map conditional-branch PC to taken/not-taken (T/N) decision
• Individual conditional branches often biased or weakly biased

• 90%+ one way or the other considered “biased”
• Why? Loop back edges, checking for uncommon conditions

• Pattern history table (PHT): simplest predictor
• PC indexes table of bits (0 = N, 1 = T), no tags
• Essentially: guess branch will go same way it went last time

• What about aliasing?
• Two PC with the same lower bits?
• No problem, just a prediction!

13

T or NT

[9:2] 1:0[31:10]

T or NT

PC PHT

Prediction

(taken or not taken)

Pattern History Table (PHT)
Pattern history table (PHT): simplest direction predictor

• PC indexes table of bits (0 = N, 1 = T), no tags

• Essentially: branch will go same way it went last time

• Problem: consider inner loop branch below

 (* = mis-prediction)

for (i=0;i<100;i++)

 for (j=0;j<3;j++)

 // whatever

– Two “built-in” mis-predictions per inner loop iteration

– Branch predictor “changes its mind too quickly”

14

State/prediction N* T T T* N* T T T* N* T T T*

Outcome T T T N T T T N T T T N

Two-Bit Saturating Counters (2bc)
Two-bit saturating counters (2bc) [Smith]

• Replace each single-bit prediction

• (0,1,2,3) = (N,n,t,T)

• By Branch_prediction_2bit_saturating_counter.gif: Afogderivative work: ENORMATOR
(talk) - Branch_prediction_2bit_saturating_counter.gif, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=15955952

15

Two-Bit Saturating Counters (2bc)
Two-bit saturating counters (2bc) [Smith]

• Replace each single-bit prediction

• (0,1,2,3) = (N,n,t,T)

• Adds “hysteresis”

• Force predictor to mis-predict twice before “changing its
mind”

• One mispredict each loop execution (rather than two)

+ Fixes this pathology (not contrived, by the way)

• Can we do even better?

16

State/prediction N* n* t T* t T T T* t T T T*

Outcome T T T N T T T N T T T N

Correlated (two-level) predictor [Patt]

• Exploits observation that branch outcomes are correlated

• Maintains separate prediction per (PC, BHR)

• Branch history register (BHR): recent branch
outcomes

• Simple working example: assume program has one branch

• 2-bit history register (4 possible entries)

– We didn’t make anything better, what’s the problem?

State/prediction BHR=NN N*

“active pattern” BHR=NT N

BHR=TN N

BHR=TT N

Outcome N N T T T N T T T N T T T N

State/prediction BHR=NN N* T T T T T T T T T T T

“active pattern” BHR=NT N N* T T T T T T T T T T

BHR=TN N N N N N* T T T T T T T

BHR=TT N N N* T* N N N* T* N N N* T*

Outcome N N T T T N T T T N T T T N

Correlated Predictor

17

Correlated Predictor
• What happened?

• BHR wasn’t long enough to capture the pattern
• Try again: 3-bit history register (8 possible entries)

+ No mis-predictions after predictor learns all relevant patterns

18

State/prediction BHR=NNN N* T T T T T T T T T T T

BHR=NNT N N* T T T T T T T T T T

BHR=NTN N N N N N N N N N N N N

“active pattern” BHR=NTT N N N* T T T T T T T T T

BHR=TNN N N N N N N N N N N N N

BHR=TNT N N N N N N* T T T T T T

BHR=TTN N N N N N* T T T T T T T

BHR=TTT N N N N N N N N N N N N

Outcome N N N T T T N T T T N T T T N

Correlated Predictor
• Design choice I: one global BHR or one per PC (local)?

• Each one captures different kinds of patterns
• Global is better, captures local patterns for tight loop

branches

• Design choice II: how many history bits (BHR size)?
• Tricky one
+ Given unlimited resources, longer BHRs are better, but…
– PHT utilization decreases

– Many history patterns are never seen
– Many branches are history independent (don’t care)
• PC xor BHR allows multiple PCs to dynamically share PHT
• BHR length < log2(PHT size)

– Predictor takes longer to train
• Typical length: 8–12

19

Hybrid Predictor

• Hybrid (tournament) predictor [McFarling]

• Attacks correlated predictor PHT capacity problem

• Idea: combine two predictors

• Simple PHT predicts history independent branches

• Correlated predictor predicts only branches that need history

• Chooser assigns branches to one predictor or the other

• Branches start in simple PHT, move mis-prediction threshold

+ Correlated predictor can be smaller, handles fewer branches

+ 90–95% accuracy

20

PC

BHR

P
H

T

P
H

T

c
h

o
o
s
e
r

When to Perform Branch Prediction?

• During Decode

• Look at insn opcode to determine branch instructions

• Calculate next PC from insn (for PC-relative branches)

– One cycle “mis-fetch” penalty even if branch predictor
is correct

• During Fetch?

• How do we do that?

21

1 2 3 4 5 6 7 8 9
bnez r3,targ F D X M W

targ:add r4,r5,r4 F D X M W

Revisiting Branch Prediction Components

Step #1: is it a branch?

• Easy after decode... during fetch: predictor

Step #2: is the branch taken or not taken?

• Direction predictor (as before)

Step #3: if the branch is taken, where does it go?

• Branch target predictor (BTB)

• Supplies target PC if branch is taken

22

regfile

DI

B

P

F D

X
M W

Branch Target Buffer (BTB)
• Record the past branch targets in a hardware structure

• Branch target buffer (BTB):

• “guess” the future PC based on past behavior

• “Last time the branch X was taken, it went to address Y”

“So, the next time address X is fetched, fetch address Y next”

• Operation

• Like a cache: address = PC, data = target-PC

• Access at Fetch in parallel with instruction memory

• predicted-target = BTB[PC]

• Updated at X whenever target != predicted-target

• BTB[PC] = target

• Aliasing? No problem; this is only a prediction.

23

Branch Target Buffer (continued)
• At Fetch, how does insn know it’s a branch & should read BTB?

• Doesn’t have to…all insns access BTB in parallel w/ I$ Fetch

• Key idea: use BTB to predict which insn are branches

• Implement by “tagging” each entry with its corresponding PC

• Update BTB on every taken branch insn, record target PC:

• BTB[PC].tag = PC, BTB[PC].target = target of branch

• All insns access at Fetch in parallel with I$

• Check for tag match, signifies insn at that PC is a branch

• Predicted PC = (BTB[PC].tag == PC) ? BTB[PC].target : PC+4

24

PC

+

4

BTB

tag
=

=

target
predicted target

Why Does a BTB Work?

• Because most control insns use direct targets

• Target encoded in insn itself → same “taken” target every
time

• What about indirect targets?

• Target held in a register → can be different each time

• Indirect conditional jumps are not widely supported

• Two indirect call idioms

+ Dynamically linked functions (DLLs): target always the same

• Dynamically dispatched (virtual) functions: hard but uncommon

• Also two indirect unconditional jump idioms

• Switches: hard but uncommon

– Function returns: hard and common but…

25

Return Address Stack (RAS)

Return address stack (RAS)
• Call instruction? RAS[TOS++] = PC+4
• Return instruction? Predicted-target = RAS[--TOS]
• Q: how can you tell if an insn is a call/return before decoding it?

• Accessing RAS on every insn BTB-style doesn’t work
• Answer: pre-decode bits in I$, written when first executed

• Can also be used to signify branches

26

I$

PC

+

4

BTB

tag

=
=

target
predicted target

RAS

PD

Putting It All Together

• BTB & branch direction predictor during fetch

• If branch prediction correct → no taken branch penalty

27

I$

PC

+

4

BTB

tag

=
=

target
predicted target

RAS

PD

PHT taken/not-taken

is ret?

A word about terminology

• Pattern History Table (PHT)

• Sometimes called Branch History Table (BHT)

• Branch History Registers (BHR)

• In book called “table of history registers (BHT)”

 

• Please use context to help guide you

28

Branch Prediction Performance
• Dynamic branch prediction

• 20% of instruction branches

• Simple predictor: branches predicted with 75%
accuracy

• CPI = 1 + (20% x 25% x 2) = 1.1

• More advanced predictor: 95% accuracy

• CPI = 1 + (20% x 5% x 2) = 1.02

• Branch mis-predictions still a big problem though

• Pipelines are long: typical penalty is 10+ cycles

• Pipelines are superscalar (later)

29

Summary

• Principles of pipelining

• Effects of overhead and hazards

• Pipeline diagrams

• Data hazards

• Stalling and bypassing

• Control hazards

• Branch prediction

• Predication (later)

30

CPUMem I/O

System software

AppApp App

	Slide 1: CSE 560 Computer Systems Architecture
	Slide 2: This Unit: (Scalar In-Order) Pipelining
	Slide 3: Control Dependences and Branch Prediction
	Slide 4: What About Branches?
	Slide 5: Big Idea: Speculative Execution
	Slide 6: Branch Recovery
	Slide 7: Branch Performance
	Slide 10: Fewer Mispredictions: Branch Prediction
	Slide 11: Branch Prediction Performance
	Slide 12: Dynamic Branch Prediction Components
	Slide 13: Branch Direction Prediction
	Slide 14: Pattern History Table (PHT)
	Slide 15: Two-Bit Saturating Counters (2bc)
	Slide 16: Two-Bit Saturating Counters (2bc)
	Slide 17: Correlated Predictor
	Slide 18: Correlated Predictor
	Slide 19: Correlated Predictor
	Slide 20: Hybrid Predictor
	Slide 21: When to Perform Branch Prediction?
	Slide 22: Revisiting Branch Prediction Components
	Slide 23: Branch Target Buffer (BTB)
	Slide 24: Branch Target Buffer (continued)
	Slide 25: Why Does a BTB Work?
	Slide 26: Return Address Stack (RAS)
	Slide 27: Putting It All Together
	Slide 28: A word about terminology
	Slide 29: Branch Prediction Performance
	Slide 30: Summary

