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Visual Psychophysics of Simple Graphical Elements

Ian Spence
University of Toronto, Ontario, Canada

The accuracy with which graphical elements are judged was assessed in a psychophysical task
that parallels the real-life use of graphs. The task is a variant of the Metfessel-Comrey constant-
sum method, and an associated model based on Stevens’s law is proposed. The stimuli were
horizontal and vertical lines, bars, pie and disk slices, cylinders, boxes, and table entries (numbers).
Stevens’s law exponents were near unity for numbers and 1-dimensional elements but were also
close to | for elements possessing 2 or 3 apparent dimensions—subjects accommodate extraneous
dimensions that do not carry variation, changing the effective dimensionality of the stimulus.
Judgment errors were small, with numbers yielding the best performance; elements such as bars
and pie slices were judged almost as accurately; disk elements were judged least accurately, but

the magnitude of the errors was not large.

The usefulness of statistical graphs for the analysis and
communication of data has increased as the costs and diffi-
culties of producing charts and graphs have declined in recent
years. Perhaps as a result of this growth in use, psychologists
and statisticians have become interested in how people per-
ceive statistical graphs, for both practical and theoretical
reasons. Recent examples of empirical work include Cleve-
land and McGill (1984, 1986), Lewandowsky and Spence
(1989), Spence and Lewandowsky (in press), Wainer and
Thissen (1979), and Broersma and Molenaar (1985). More
theoretical discussion—much of which is based on results
from traditional psychophysics—may be found in Bertin
(1983), Cleveland (1985), Macdonald-Ross (1977), and Kos-
slyn (1985, 1989).

In statistical graphs, quantities such as frequencies, cumu-
lative frequencies, percentages, and proportions are often
represented by the lengths of lines, the areas of bars or pie
slices, and sometimes by the apparent sizes of more compli-
cated elements such as cylinders, boxes (rectangular parallel-
epipeds), and other volumes of various kinds drawn in per-
spective. Using different graphical elements and also a table,
Figure 1 shows a variety of ways of displaying the same data.
Clearly, the accuracy with which an observer infers numerical
values depends critically on the perception of the size of the
elements used to represent the numbers. Elements associated
with substantial perceptual bias are undesirable. There is
much advice in the literature regarding the suitability of
graphical elements for the representation of numerical quan-
tities. Tufte (1983), for instance, recommends avoiding all
unnecessary elaboration such as extraneous dimensions that
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do not carry information about the data—thus the use of
cylinders or boxes is anathema—but he offers no data in
support of this recommendation. Macdonald-Ross (1977)
advocates the use of bar charts in preference to pie charts,
assuming that the judgment of bars involves only an assess-
ment of length, whereas estimating the size of a pie slice
involves a combination of area, angle, and arc length. He
makes the point that because the exponents of psychophysical
power functions tend to be smaller for judged volume and
judged area than for judged length, graph makers should
avoid elements with high apparent dimensionality. A similar
position is taken by Cleveland and McGill (1984), who pre-
sented judgmental accuracy data for several graphical ele-
ments but did not estimate Stevens’s exponents. Croxton and
Stein (1932) advise using bars in preference to other graphical
elements: They showed that bars were judged more accurately
than squares or circles, which were in turn judged more
accurately than cubes. Their results are consistent with pro-
gressively smaller exponents as the apparent dimensionality
rises.

Although many authors have appealed to the psychophys-
ical literature to support their recommendations, and also as
a basis for theoretical analysis, there appear to be no experi-
ments that attempt to estimate Stevens’s exponents in a
psychophysical task that reflects the behavior of observers of
graphs. In this article, I propose a psychophysical task and an
associated judgmental model as well as two statistical esti-
mators of the Stevens’s exponent. The method is applied to
graphical elements of various apparent dimensionalities.

The Constant-Sum Procedure

The Task

When we examine a graph, we usually compare the sizes of
individual graphical elements. How much greater was the
rainfall in September than May? Is the price of oil in constant
dollars increasing or decreasing from year to year? Do more
people subscribe to Time than Newsweek? Did the ABC
Corporation pay the largest dividends last year, or did XYZ?
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Figure 1. One table (top left) and seven graphs that display the same
numerical data. The table elements are numbers. The graphical
elements are bars, lines [vertical], lines [horizontal], pie slices, disk
slices, cylinders, and boxes.

Indeed, the estimation of individual magnitudes, while not
unimportant, is probably not as useful as the comparison of
the relative sizes of quantities. It is the ability to perceive
relations among the elements of graphs that makes graphs
such powerful tools, and the use of particular graphical ele-
ments, rather than others, may make this process of compar-
ison easier. Hence, the experimental task described here re-
quires subjects to compare graphical elements, rather than
. make magnitude estimates of elements presented in isolation.

The method may be applied with any element, but the
following illustration uses boxes: A subject is shown two
boxes, generally of different sizes, and must estimate the
apparent proportion of the whole that each represents. The
instructions do not ask the subject to attend to “height” or
“volume” but simply to “size.” There are many ways of
eliciting this judgment, but in the present experiment subjects
divided a horizontal line, of fixed length, into two parts whose
lengths were proportional to the perceived sizes of the boxes
(see Figure 2). Some subjects saw a numerical scale below the
line but others did not.

The constant-sum method is not restricted to studies in-
volving graphical elements but has wider application. Its
invention is usually credited to Metfessel (1947), but Comrey
(1950) and Torgerson (1958) are mainly responsible for its
development and popularization; see also Goude (1962) and
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Fagot (1981) for the closely related part-sum method. The
present procedure differs slightly in that, at least within a
particular experimental condition, the magnitudes of the two
physical stimuli always sum to the same constant. The method
may have the advantage (over conventional magnitude esti-
mation tasks) of avoiding the problems of sequential effects
(Cross, 1973; Morris & Rule, 1988; Ward, 1973) and other
effects noted by Poulton (1968). Although the basic task is
not new, its use to estimate Stevens’s law exponents is novel.

Estimating the Exponent

On each trial, a subject judges the sizes of two quantities,
II and Q, the sum of which is a constant value that may be

_-assumed to equal unity, without loss of generality. Thus, IT +
Q = 1, or, alternatively, I1 + (1 — II) = 1. Assume that the

subject’s (unspoken) magnitude estimate of the size of either
quantity follows Stevens’s law; for example,

¢=

where « is a scale factor and 8 is the exponent of the power
function. If, for either quantity (II or 2), the subject is asked

all?,

’ to provide an estimate ( P or Q) of its proportion of the whole,

the judged proportion may be modeled as

p= all? _ 1
T allf + ol =¥ 1+ [(1 — M)/IP

for P, and a similar expression holds for Q. This implies that
the judged proportions (P and Q) for the two objects sum to
unity.

A slightly different conceptualization also leads to the same
psychophysical function. If one assumes that the subject bases
the judgment on the ratio of the subjective size of one object
to the subjective size of the other subject, the same model
results, because

(1-Pp)
P

Q

[ = my/mp;

hence,

1
== 1=[( - /Iy,

which is equivalent to

1

Py —mymr

Consequently, one cannot distinguish the two possible strat-
egies with this experimental method.

In the typical case where 8 # 1, the function relating P and
I1 is S-shaped (e.g., see Figure 3). This type of function has
been observed empirically (e.g., Nakajima, 1987; and also the
present experiment).

The model

1
P=17 [(1 = my/mopP

may be restated as

[(t = P)/P) = [(1 — ID/IP".
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Figure 2. Task display. (Subject must position the cursor so that the horizontal line is divided in
proportion to the apparent sizes of the elements, which are boxes in this example.)

Taking logarithms yields
log[(1 — P)/P] = 8 log [(1 — ID)/TI].

If, under replication, the subject produces judgments P; cor-
responding to several values of II; the exponent 8 may be
estimated by least squares:

Y. logl(1 = P)/Pllogi(1 — IL,)/I1}

B =
% log?{(1 - II)/11]
JUDGED 10
PROPORTION
815~
g=0.9
o®
0.5
0.0 T
00 05 10

TRUE PROPORTION

Figure 3. Three theoretical psychophysical functions for Stevens’s
exponents of 0.6, 0.9, and 1.5.

Optionally, a robust estimate may be used. One particularly
simple method uses Siegel’s (1982) repeated-median esti-
mator, which, in this case, reduces to

B = meddlog[(1 — P)/P)/log[(1 — IL)/IL]}.

In this article, robust estimates are preferred. Untrained
subjects produce occasional aberrant responses that can exert
considerable leverage on least squares estimates (Spence &
Lewandowsky, 1989). These outliers are sometimes due to
inattention or boredom but can also occur as the result of a
reversal of the response scale. A reversal of the scale occurs,
for example, if the subject divides the line in the ratio 30/70
when the true stimulus ratio is 70/30. It is clear that such
reversals do not represent a failure to perceive the ratio
accurately, but rather constitute a failure to execute the task
properly. Occasional apparent reversals of scale were observed
in the experiments reported here (see below).

Thus the Siegel repeated-median estimator was used with
the Stevens’s law exponent. Like the ordinary median, this
estimator has an efficiency of about two thirds with Gaussian
data, and although robust estimators with higher efficiencies
are available, the median-based estimator was preferred be-
cause of its simplicity.

Experiment 1

Method

Subjects. Subjects were University of Toronto undergraduates
who were recruited by means of sign-up sheets posted at various
locations on campus. They were paid $5 for their participation.

Apparatus. Stimuli were presented by using an IBM PS/2 Model
80-071, with 80387 mathematics coprocessor and VGA graphics
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adaptor, on an IBM 8513 monitor with approximate screen dimen-
sions of 22 x 17 em. The distance between the subject’s head and the
monitor was approximately 1 m, with the screen subtending about 8°
horizontally and 6° vertically. The room was illuminated by subdued
incandescent lighting, and the monitor was positioned to minimize
reflections from other objects in the room.

Stimuli. Each display was created and presented, virtually instan-
taneously, by using the graphics primitives available in Microsoft C,
Version 5.0 (Microsoft, 1987). The element sizes on each trial were
determined by sampling randomly from a discrete uniform distribu-
tion on the range 2-98, thus assigning this value to one element and
its hundreds complemert to the other. Seven different graph elements
were used, as well as table elements (numbers). The element pairs
were displaved in three different overall sizes; small, medium, and
large, in the ratios 1:2:4. The largest element pair occupied roughly
two thirds of the screen area.

The graphical elements were similar to those shown in Figure 1,
and they had apparent dimensionalities of one (horizontal and vertical
lines), two (bars and pie and disk slices), and three (boxes and
cylinders). The different element types were presented to the subjects
in a display like that shown in Figure 2. To help subjects properly
associate each of the elements with the correct end of the to-be-
divided line, the experimenter showed one element in outline form
(white on black) and the other in a light-gray fill. Small squares, one
in outline and the cther shaded light gray, were positioned at the ends
of the to-be-divided line.

The table elements (numbers) were positive integers. Because num-
bers are symbols and not geometrical objects like the seven graphical
elements, they are assumed to have zero dimensionality. The table
elements (numbers) were arbitrarily chosen to sum to 140 in the large
condition, 70 in the medivm condition, and 35 in the small condition.

Subjects moved the cursor using the left and right arrows on the
cursor keypad to divide the line before pressing the Enter key. The
initial cursor position was determined by moving 25 percentage points
away from the optimal position and then superimposing a random
normal deviate with standard deviation 3. If the resulting value fell
outside the 0% and 100% boundaries, the cursor was placed at the
closer boundary. The response latency, from display onset to pressing
the Enter key, was obtained and recorded. The next trial started 500
ms afier the preceding response.

Instructions. Subjects were given written instructions covering
various aspects of the study before the practice and experimental
trials. The most critical instructions concerned the task:

You must move the cursor left or right to divide the line into
two parts, with each part proportional to the sizes of the two
parts in the figure above. Thus if the shaded part of the figure is
about the same size as the unshaded part, you would position
the cursor somewhere in the middle. If the shaded part is very
small relative to the unshaded part, you would position the
cursor near the left end of the line. If the shaded part is larger
than the unshaded part, then the cursor should be nearer the
right-hand end of the line.

Subjects were instructed to work guickly but also accurately.

Design and procedure. Each subject saw only one type of graph-
ical element (e.g., boxes), and the overall size of the elements was
varied among, but not within, three consecutive experimental sessions
of 100 trials each, with 1wo short rest breaks between sessions; small,
medium, and large elements were used. The judgments of 12 subjects
were obtained for each of the eight element types, requiring 96
subjects in total. Six of each subgroup of 12 subjects made their
judgments with the assistance of a graduated scale, with divisions at
10% intervals labeled 0, 10, 20, ...100. The remaining six used no
scale. Thus, judgments were made with and without the presence of
an explicit numerical scale.

Al possible presentation orders of the element sizes were used with
each group of 6 subjects, and thus the basic building block of the
experiment was a changeover design (composed of two 3 X 3 Latin
squares). A 10-trial practice period, with subjects using large elements,
preceded the experimental sessions. The experimenter observed each
practice trial; if subjects did not perform the task appropriately, they
had to repeat the practice trials. The experiment lasted about 50 min
for most subjects.

Resuits

Individual psychophysical functions. Figure 4 shows six
psychophysical functions from the set of 288 (96 subjects x 3
stimulus sizes) generated in the experiment; each function
was fit to the 100 judgments according to the robust procedure
described earlier. The element type is shown at the top left of
each panel, and in the two cases in which a scale was used,
this is indicated. The estimated Stevens’s exponent is shown
at the bottom right of each panel. The examples shown are
atypical inasmuch as five of the six have exponents that differ
markedly from unity, illustrating the distinctive S-shape of
the data in such cases. Nearly all of the 288 scatterplots
exhibited variabilities similar to those shown in Figure 4: The
variabilities were larger than that associated with the disk
example {at lower left) in only a handful of cases, with the
worst approximately 1.5 times as variable. Most of the 288
plots showed only small deviations from linearity, and when
nonlinearity was present it displayed the charactenistic S-shape
present in five of the six panels of Figure 4. Visual inspection
and various goodness-of-fit statistics (such as the mean- and
median-squared errors) suggest that the model used to esti-
mate the Stevens’s law exponent generally fits very well. As
discussed later, group-average estimated exponents did not
deviate greatly from unity, but individual exponents as low
as 0.70 and as high as 1.35 were observed, with the middle
50% lying between 0.84 and 1.01, and an overall median of
0.95.

Figure 4 contains data (in the two center panels) that suggest
that these subjects reversed the scale on some trials (this
occurred between 1% and 5% of the time with 14 of the 96
subjects.) As can be seen, the fitted regression has resisted the
effect of such outliers. Visual inspection of all regressions in
which scale reversals may have occurred confirm that this
phenomenon did not adversely affect the estimation of the
exponent. Another interesting feature is seen in the disk
example, where the subject has divided the line only at points
corresponding to the graduation marks on the accompanying
scale.

Combined analvsis. There was no effect involving pres-
entation order for any of the three response variables (expo-
nent, accuracy, and latency). The presence or absence of a
numerical scale below the line was only significant with
accuracy, F(1, 80) = 5.24, MS, = 2.58, p < .001; Overall
accuracy was slightly better with the scale (2.8%) than without
(3.6%). There was no main effect of scale with either exponent
or latency.

There were significant effects invalving stimulus size, but
only with exponent and not with accuracy or latency. The
main effect of size, F(2, 160} = 32.02, MS, = 0.0043, p <
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Figure 4. Six empirical psychophysical functions for a variety of element types (Some subjects used an accompanying numerical scale, but
others did not. The estimated Stevens’s exponents are shown.)
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.001, the Size x Scale, F(2, 160) = 4.24, MS. = 0.0043, p <
.05, and the Size X Element, F(14, 160) = 1.97, MS, =
0.0043, p < .05, interactions were significant. The main effect
of stimulus size was not large: The average exponent was 0.99
for small stimuli, 0.96 for medium stimuli, and 0.91 for large
stimuli. There was a small Size X Element interaction, how-
ever: The pattern was the same across elements—the smaller
the stimulus, the larger the exponent—but differences for low
dimensional objects were negligible (the maximum difference
for horizontal and vertical lines, or numbers, was 0.05, and
the associated 5% Fisher’s least significant difference was
0.06).

Element was significant for all three response variables:
exponent—F{(7, 80) = 4.16, MS. = 0.033, p < .001; accu-
racy—F(7, 80) = 5.24, MS, = 2.58, p < .001; and latency—
F(7, 80) = 4.50, MS, = 12.92, p < .001. Apart from the
interaction with size, no other interactions with element at-
tained significance at the .05 level.

Figure 5 shows the estimated exponents for the element
types. The figure is a dot chart (constructed after the fashion
of Cleveland & McGill, 1984), where the dot position indi-
cates the value of the response measure and the error bars are
95% confidence intervals for the means. For comparison, the
bent arrows indicate typical values of exponents for one-,
two-, and three-dimensional objects (Baird, 1970). The esti-
mated exponents for the elements vary in the range 0.89-
1.07, with mean 0.95, and thus resemble exponents typically
obtained with one-dimensional objects. It is instructive to
note that the theoretical function (in Figure 3) for an exponent
of 0.9 deviates only slightly from the straight line associated
with an exponent of 1.0. For an exponent of 0.9, the maxi-
mum percentage discrepancy associated with nonlinearity is
about 2.4% and is typically much less. In practice, discrep-
ancies will be larger because of other sources of error.

Figure 6 shows that the most accurate performers are table
elements (numbers), pie elements, and bar elements, with
accuracies better than 3%. Boxes, cylinders, and lines lie
between 3% and 4%. The worst is the disk element, but even
it has an average error of only 4.1%. There appears to be no
association between apparent dimensionality and accuracy.

As shown in Figure 7, there are differences in the average
time taken to respond, with element types of low apparent

Graph Length Apparent
Element Area Dimension
Volume v ;,
Cyiinder |- - - - - e o - - e
3
Box |- - —.—
Bar | .—i . e
Disk |- - - —.— . 2
Pie |- o
Line (H) ............. e - e e 1
Lne (VW) |- - - - o - e e e
Tabte |- - - - - - - - - - e 0
0.0 0 1.0 1.5
Exponent

Figure 5. Dot chart with 95% confidence intervals showing the
average exponent for each element.

Graph Apparent
Element Dimension

Cylinder [ -« - - - - - o o T 3

Box | - - - .« . L —_——— - e e

Bar | - - - - - - ——d - e

Disk | . - - o —_—— - - . 2

Pie | - . . . . . . . .. —.—t - e e e

Lne(Hy | - - - - - « « « ———t 1

Lne (V) | - - - - - o oo —_——.

Table | - - - . . . . .. —.—— - - e e e e 0

0 1 2 3 4 5
Accuracy

Figure 6. Dot chart with 95% confidence intervals showing the
average accuracy (absolute discrepancy in percent) for the elements.

dimensionality requiring longer time. The two- and three-
dimensional elements were judged almost 50% faster than the
zero- or one-dimensional elements.

Discussion

Modeling the Metfessel-Comrey task. The data from 288
sessions were fit using the model proposed earlier. In virtually
all cases it provided a very good description of the data,
suggesting that the subjects’ behavior was not inconsistent
with the view that they either form the ratio of the apparent
size of one object to the sum of the apparent sizes of both
objects, or, equivalently, the ratio of the size of one object to
the other. Also, although the model has not been used to fit
data collected by others, it may be able to account for the
shape of psychometric functions found by other investigators
(e.g., Nakajima, 1987) using similar tasks.

Effect of dimensionality. Contrary to general opinion (e.g.,
Cleveland & McGill, 1984; Macdonald-Ross, 1977), an in-
crease in the apparent dimensionality of a graphical element
is not necessarily associated with a concomitant decrease in
the Stevens’s law exponent (see Figure 5). Likewise, the ap-
parent dimensionality of a graphical element seems to bear
no relationship to how accurately its magnitude is judged.

Graph Apparent
Element Dimension

Cylinder |- - - -« « « « . . —— - - e e . 3

BDX .......... | e

Bar  { - - - ——— e

DlSk ........... b s - 2

Pie |- . ——t - e e

Lne(H) | - - - - i < - - . .. ;

Line (V) |- - « =« o oo [

Table | - - - - - - —_—— - - . 0

0 1 2 3 4 5 6 7 8 9 10 11
Latency (Seconds)

Figure 7. Dot chart with 95% confidence intervals showing the
average latency (response time in seconds) for the elements.
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Elements with apparent dimensionalities greater than one
were judged as though the elements possessed only one di-
mension, but they were judged more quickly than lower
dimensional elements. Of course, in general, Stevens’s expo-
nents for area and volume are considerably smaller than unity
for most real and apparent objects (Baird, 1970), and higher
dimensional objects are not usually judged as accurately
(Cleveland & McGill, 1986; Croxton & Stein, 1932); however,
care must be taken to distinguish situations in which the extra
dimensions do not carry information and are merely decora-
tive. When the additional dimensions of graphical objects do
not show variability, the judgment of size becomes essentially
one of length, and the present results are not surprising when
considered in that light.

Apart from the pies and disks, only one dimension of the
two- and three-dimensional objects was varied. This accords
with normal practice in contemporary graphs, where it seems
that the advice of authors like Karsten (1923), Mudgett (1930),
Huff (1954), and Schmid (1983) has generally been heeded.
Although area changes in a more complicated way in a pie or
disk chart, it seems likely that most subjects do not use area
as the primary basis for their judgments of size. Because the
total area of the circles or disks did not vary, most subjects
probably used the angle, arc length, or chord length rather
than the slice area as a measure of size. Eells (1926) reported
that only 25% of his subjects used area as a basis for their
Judgments of size, with the other 75% preferring to use the
angle or arc/chord length. Several subjects in this study said
they compared the segment angle with the angle formed by
halves (180° = 50%) or quarters (90° = 25%). This suggests
that judgments of pie and disk slices are effectively unidimen-
sional and that some subjects create coarse (but linear) refer-
ence scales by using strategies such as the one just mentioned
(Simkin & Hastie, 1987).

Effect of stimulus size. The effect of stimulus size on
exponent was small but reliable, at least for the two- and
three-dimensional elements, and may have been caused by
the framing effect of the screen surround. Kiinnapas (1955)
and Rock and Ebenholtz (1959), for example, have shown
that a line enclosed by a small frame is judged to be longer
than a line of equal length surrounded by a large frame. As
previously noted, the effect is questionable with table elements
(numbers) and lines but is convincing with the other elements.
If framing is indeed responsible for these small effects, two-
and three-dimensional elements may be more susceptible
because they extend in both horizontal and vertical directions
within the frame.

Tables. Tufte (1983) has suggested using tables instead of
graphs when only a few numbers must be presented, and
Ehrenberg (1975) has also championed the use of properly
constructed tables. Although table elements (numbers) are
judged accurately, subjects take more time than with almost
any graphical element. Hence, tables are preferable only if the
audience is able to devote sufficient time and energy to their
interpretation. With casual readers, who are less likely to
linger, graphs may be superior to tables. Spence and Lewan-
dowsky (in press) compared the accuracy with which ordinal
comparisons of size were made with complete bar graphs, pie
charts, and tables to display proportions. They found that

simple pairwise comparisons were made equally accurately
with each of the display types. The results of the present study
are consonant with that finding. However, Spence and Le-
wandowsky (in press) found that for comparisons involving
three or more elements, the table was inferior to the graphs
when processing time was restricted. The present study sug-
gests that this may have been because subjects make judg-
ments of table elements (numbers) more slowly.

Effect of stimulus variation. It may be argued that the task
in Experiment 1 is somewhat unnatural: In the real world,
numerical information is presented in a variety of formats,
and one must switch rapidly among presentation styles within
a single newspaper, book, magazine, or journal, and even
within single articles. Readers forced to go back and forth
among several formats may have to adopt different strategies
with broader foci of attention. Experiment 2 was designed to
explore the possibility that different results might be obtained
when the subject is forced to switch rapidly from one format
to another. Furthermore, in Experiment 1 comparisons
among elements were between subjects, leaving open the
possibility that observed differences among groups, despite
random allocation, may have capitalized upon individual
differences. In Experiment 2 all subjects judged all elements.

Experiment 2

Method

Subjects. Subjects were University of Toronto undergraduates
who were recruited by means of sign-up sheets posted at various
locations on campus. They were paid $20 for their participation in
three separate experimental sessions of about | hr each.

Apparatus and stimuli. These were identical to those used in
Experiment 1.

Instructions. These were the same as in Experiment 1.

Design and procedure. Each subject saw all eight graphical ele-
ments, as used in Experiment 1, but the size of the elements did not
vary: All elements were of medium size. Subjects participated in four
blocks of 80 trials, at approximately the same time on each of 3
consecutive days—making 12 blocks in total. Hence each subject
made 960 judgments: 120 for each of the eight element types. The
elements were presented in random order, with 10 presentations of
each type in each block of 80 trials. There was a subject-paced break
of a few minutes after each block of trials. As in Experiment 1, the
numerical values of the percentages represented by the elements were
chosen randomly for each trial.

All subjects made their judgments with the assistance of a graduated
scale, with divisions at 10% intervals labeled 0, 10, 20, . . .100. A 16-
trial practice period, with two exemplars of each of the eight elements
placed in random positions, preceded the experimental sessions. The
experiment required about 60 min on each of 3 consecutive days.
Ten subjects were used.

Results

Robust estimates of Stevens’s exponents were calculated for
each element by amalgamating each subject’s data from the
12 blocks. Thus each subject’s exponent is based on 120
responses. There were significant element effects: exponent—
K(7, 63) = 4.50, MS. = 0.002, p < .001; latency—F(7, 8640)
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= 39.07, MS, = 32.33, p < .001; and accuracy—F(7, 8640)
= 10.68, MS. = 28.59, p <.01. For both accuracy and latency,
the Subject X Block and Subject X Element interactions were
significant at the .05 level, but each accounted for a very small
percentage of the variance in the experiment. Examination of
the graphs of these interactions did not reveal systematic
patterns.

Table 1 shows the element means for each of the response
measures, alongside the means from Experiment 1. Both
experiments show essentially the same patterns of results, with
three exceptions. First, the accuracies for horizontal and ver-
tical lines are reversed, with vertical lines judged slightly more
accurately in Experiment 2. Second, the pie chart is judged
much less accurately (3.8% error vs. 2.5% error) in Experi-
ment 2. And third, the latencies for all elements are longer in
Experiment 2 and no longer show a general reduction with
increasing apparent dimensionality.

Learning effects over blocks were observed: latency—F(11,
8640) = 57.22, MS, = 32.33, p < .001, and accuracy—F(11,
8640) = 5.24, MS. = 28.59, p < .01. Subjects improved
slightly in both speed and accuracy over the first three blocks
of trials before settling down to relatively stable levels of
performance.

It is interesting to note that the variability of the latency
and accuracy responses (though not for the exponent re-
sponse) has risen by a factor of 2 or 3 from Experiment 1 to
Experiment 2. Closer inspection of the data reveals a length-
ening and increase in weight of the tails of the distributions,
probably reflecting the increased difficulty of the task.
Whereas the medians and means for accuracy and latency
differ little in Experiment 1, the differences are generally larger
in Experiment 2, and in one case (pie chart: median = 2.3;
mean = 3.8), the difference is very large indeed. This probably
indicates that once subjects are used to the task, they are just
as capable of making accurate judgments as in the first
experiment, but the strain of having to switch quickly between
eight different types of display induces inaccuracies or delayed
responses in a significant proportion of cases.

Discussion

Many of the comments regarding the results of Experiment
1 apply equally well here. It seems that the primary conse-

Table 1
A Comparison of Experiments 1 and 2

quence of forcing a subject to switch rapidly among different
element types is to increase the variability of responding:
There are larger differences between the means and medians
of the accuracy and latency distributions, reflecting a length-
ening and thickening of the tails. More gross errors are made
by the subjects, and they also take longer to respond, some-
times considerably longer. These effects are presumably
caused by the increased load on the subject. Indeed, subjects
reported finding the task difficult and tiring, whereas no such
complaints were voiced during the first experiment.

Because graphs are normally viewed in the context of other
ongoing activities with varying demands that require imme-
diate switching of attention, Experiment 2 may be a better
indicator of real-world performance than Experiment 1. The
first experiment required the subjects to repeat exactly the
same task many times, and subjects probably became quite
efficient at estimating the relative sizes of the elements partly
as a result of not needing to switch rapidly and unpredictably
among the several quite different strategies appropriate for
each of the individual graph elements.

General Discussion

Related Studies

Mudgett (1930) proposed, but did not perform, a study
similar to those reported here, and Croxton and Stein (1932)
reported an experiment that is closely related to the present
work. They presented pairs of figures, on cards, to subjects
and asked them to say what fraction one was of the other.
The figures were either horizontal bars, squares, circles, or
perspective drawings of cubes. The bars varied in length, the
circles in diameter, and the squares and boxes in length (or
apparent length) of side. The mean judgmental accuracy for
bars was found to be about 2.9%, for squares about 7.8%, for
circles about 7.2%, and for cubes about 13.9%. Their value
for bars, which is the only one that may legitimately be
compared, accords remarkably well with our results. The
accuracies for squares and circles are consistent with a Ste-
vens’s exponent of about 0.8, and about 0.6 for the cubes.
But it must be remembered that Croxton and Stein simulta-
neously varied all dimensions present in their figures, except
for bars in which only one dimension was varied.

Apparent dimensions

Response 0 ! 2 3
measure Table Line (V) Line (H) Pie Disk Bar Box  Cylinder
Exponent
Experiment 1 1.1 0.9 0.9 1.0 1.0 1.0 0.9 0.9
Experiment 2 1.0 1.0 0.9 1.0 1.0 1.0 1.0 0.9
Accuracy
Experiment 1 24 38 3.2 2.5 4.1 2.8 3.2 3.3
Experiment 2 2.8 32 3.9 3.8 4.0 2.9 3.0 3.0
Latency
Experiment 1 8.6 7.6 8.7 6.6 6.1 5.5 5.9 5.4
Experiment 2 12.5 10.1 10.3 12.2 11.4 10.1 10.1 10.1

Note. V denotes vertical and H denotes horizontal.
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Cleveland and McGill (1986) used a similar task. They
presented four stimuli and had subjects compare three of the
stimuli to the fourth, estimating the percentage size of each
relative to the standard. They did not calculate Stevens’s
exponents—although this could be done in a fashion similar
to that proposed here—but they did report the accuracies.
Where comparable, the accuracies were slightly poorer than
those in the present study. This may be due to differences in
the task and the experimental procedure: They required three
judgments of four simultaneously presented stimuli, thus
introducing dependencies, and the administration was by
paper and pencil. They fitted quadratic functions to the
accuracies (as a function of the true percentage) and found,
surprisingly, that the maxima of these functions were generally
located at true percentages greater than 50. Cleveland and
McGill (1986) offered no explanation. If the judgment process
is appropriately described by a Stevens’s power function, the
accuracy function should be

AQ) =10Q,/0, - (Q/Q)I,

where Q, is the true size of the smaller stimulus and (Q; is the
size of the standard. The maximum may be found in the
usual way, by equating the first derivative to zero, giving a
true percentage of 25 for an exponent of 0.5. For exponents
of 0.8, 1.2, and 2.0, the maxima fall at 33%, 40%, and 50%,
respectively. Only for exponents greater than 2.0 do the
maxima lie above 50%. For an exponent of unity, the accu-
racy function is flat. Some of Cleveland and McGill’s func-
tions appear to be fairly flat and are presumably consistent
with a unit exponent.

Conclusions

Because one-, two-, and three-dimensional objects (such as
lines, bars, and boxes) all yield exponents in the region of
unity, we conclude that reduced exponents are not a simple
function of the dimensionality of objects per se, but rather
depend on the number of dimensions carrying variation. If
rectangles with an invariant base length are presented to
subjects, an exponent around one is obtained, whereas if
rectangles with varying heights and bases were used, the
estimated exponent would generally be lower (Baird, 1970).
With boxes, the exponent may be expected to be around 0.6
if all three dimensions vary and around 0.8 if only two
dimensions vary. This tuning of the exponent to the variability
of dimensions deserves further investigation to determine how
exponents for judged size depend on the amount of variation
observed along each of the dimensions.

An alternative interpretation of the somewhat surprising
finding that the exponents for two- and three-dimensional
objects are in the region of unity is based on Teghtsoonian’s
(1965) finding that subjects can make proportional judgments
of size, provided they are instructed appropriately. Teghtsoon-
ian showed that judged area is linear with physical area when
subjects are instructed to judge “real” rather than “apparent”
area. In the present experiments, subjects were not instructed
to judge the real size of the objects—indeed, the instructions
were similar to those in Teghtsoonian’s apparent size condi-

tion. Nonetheless, because graphical elements are typically
seen in situations in which they are used to represent numer-
ical quantities in a proportional fashion, subjects may have
assumed that they should make judgments of real rather than
apparent size. This possibility deserves further investigation.

From a practical viewpoint, and considering the nature of
the tasks required in the present experiments, the best all-
round candidates for representing numerical quantities are
probably bars, boxes, and cylinders: All yield exponents close
to unity, and all are judged accurately and quickly. Although
the pie chart does almost as well, it may be more susceptible
to gross errors when the viewer has to work quickly or is
under some stress. Table elements are also compared accu-
rately, but it should be remembered that they require more
time. There seems little reason to prefer horizontal and ver-
tical lines on the grounds of speed or accuracy to higher
dimensional elements. For some applications, disks may not
be a bad choice, because despite their relative inaccuracy,
they exhibit no large systematic deviation from linearity.

Tufte (1983) has advocated using plain graphs that maxi-
mize the “data ink ratio.” Thus, he prefers simple forms, such
as lines, for representing numerical quantities over forms that
possess irrelevant extra dimensions, such as cylinders. He
explicitly recommends that “the number of information-
carrying dimensions should not exceed the number of dimen-
sions in the data” (Tufte, 1983, p. 71). The present results
cast some doubt on the wisdom of this recommendation, and
to the contrary, suggest that elements with high apparent
dimensionality lack nothing in accuracy and may be processed
faster under some circumstances. The nonessential dimen-
sions must not carry information but be solely ornamental.

Attractive displays often result when high dimensional ele-
ments with irrelevant extra dimensions are used, and un-
doubtedly, attractiveness plays a role in drawing the attention
of the reader. We may also speculate that attractive graphs
containing elements resembling objects in the real world may
be better remembered than those based on more abstract
elements.
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1991 APA Convention “Call for Programs”

The “Call for Programs” for the 1991 APA annual convention was included in the October
issue of the APA Monitor. The 1991 convention will be held in San Francisco, California,
from August 16 through August 20. Deadline for submission of program and presentation
proposals is December 14, 1990. This earlier deadline is required because many university
and college campuses will close for the holidays in mid-December and because the conven-
tion is in mid-August. Additional copies of the “Call” are available from the APA Conven-
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