Recall the MAX-CUT problem: we are given a graph G, and we wish to partition the vertex set V of G into two parts S and $V - S$, such that the number of edges crossing between the parts is maximized.

Let’s consider the following randomized algorithm for MAX-CUT. Initially, set S empty. For each vertex $v \in V$, add v to S with probability $1/2$; otherwise, add it to $V - S$.

1. Prove that the expected size of the cut produced by this algorithm is $|E|/2$.

2. Describe how to derandomize this algorithm by the method of conditional expectations. Hint: Suppose you know that $A \subseteq S$ and $B \subseteq V - S$, where A and B are subsets of the vertices in V. How do you compute the expected cut size over the possible assignments of the remaining vertices?

3. Try to formulate an ILP that captures the MAX-CUT problem. (You need not build an LP approximation algorithm from this ILP.)

1 Shared Critique

Your TA will organize this part of the exercise. Be prepared to explain and defend your algorithms and proofs.