1 The Cable Guy Problem

- You are an installer for Charter Cable.
- Your job is to do installations by appointment.
- Appointments have a fixed length (30 minutes) and must start on a 30-minute boundary.
- Each new customer specifies an earliest and latest possible start time for her appointment.
- **Goal**: schedule as many appointments as possible in a day.

More formally...

- Given set P of unit-duration jobs that must be scheduled at integer times ("time slots") 0, 1, 2, \ldots
- Only one job may be scheduled per slot.
- Job i may start in any slot from s_i to e_i, inclusive.
- **Goal**: find a schedule that maximizes number of jobs scheduled.

2 A Greedy Algorithm

OK, here's a simple algorithm.

- Let P be input set of jobs.
- Let t be latest free slot in which some job from P may be scheduled.
- Let $\Sigma \subseteq P$ be set of all jobs in P that can be scheduled at time t.
- Choose job $i \in \Sigma$ with latest start time s_i.
- Schedule job i at time t.
- Recur on remaining job set $P - \{i\}$, until this set is empty or no jobs can run.
Example:

3 Optimality

Let’s implement our three-part proof...

- **Greedy Choice Property**: let \(i \) be the job chosen first by greedy algo, and let \(\hat{t} \) be the time at which algo scheduled it. Then ...

- ...there exists an optimal solution that makes the greedy choice, that is, a soln that schedules \(i \) at time \(\hat{t} \).

- *(Note: it is not enough to find opt soln that uses \(i \) – it must be placed at time \(\hat{t} \), since this is what greedy choice does!)*

OK, on with the proof!

- **Pf**: Let \(\Pi \) be any optimal solution.

- If \(\Pi \) schedules \(i \) at time \(\hat{t} \), great.

- Otherwise, we have two cases.

- **Case 1**: Suppose \(\Pi \) doesn’t schedule \(i \) at all.

- If slot \(\hat{t} \) is empty in \(\Pi \), can simply add \(i \) for better soln.

- If slot \(\hat{t} \) is occupied by job \(j \), throw out \(j \) and put \(i \) there. Soln has same size as before.

- **Case 2**: Suppose \(\Pi \) schedules \(i \) at time \(t \neq \hat{t} \)

- If slot \(\hat{t} \) is empty in \(\Pi \), move \(i \) to \(\hat{t} \).

- Otherwise, some job \(j \) occupies slot \(\hat{t} \).

- Observe that \(t < \hat{t} \), since by choice of \(\hat{t} \), no job in \(P \) can be scheduled after time \(\hat{t} \).

- Observe also that by choice of job \(i \),

\[
 s_i \geq s_j.
\]

- Since \(t \geq s_i \), job \(j \) can run at time \(t \).

- Hence, we simply exchange slots of jobs \(i \) and \(j \).
• In all cases, new soln has size at least that of old and so is optimal. QED

One down, two to go.

• **Inductive Structure**: after making greedy choice, we are left with smaller instance of scheduling problem with no external constraints.

• **Pf**: Let $P' = P - \{i\}$.

• P' is clearly a smaller set of jobs to be scheduled.

But what about constraints?

• First time greedy schedules a job, it can use latest slot that any job can take.

• For subsequent choices, this property does not hold! Consider our simple example.

• It seems we are more constrained on recursive calls than on original call! This breaks inductive structure.

• *Two solutions here.* Either extend the problem, or more carefully define the recursive call.

• **Problem extension**: input to problem includes a list of blocked slots. On recursion, also block i.

• Check that my algo description and proof of GCP need not change under this extension!

• (This is nice because you can allow the cable guy to take a lunch break.)

• **Recursion Defn**: as it happens, times are filled in from latest to earliest.

• So, trim ends of all unscheduled jobs back to at most $t - 1$.

• Also, remove any jobs j for which $s_j \geq t$.

• For remaining jobs, algo never looks beyond $t - 1$, so does not see additional constraints.

• (Might be able to simplify GCP proof a bit, but forbids lunch breaks.)

• With one of the above two hacks, adding i in slot \hat{t} will be possible no matter how the subproblem is solved, so subsolution plus greedy choice is a feasible solution.

Two down, one to go.

• **Optimal Substructure**: let Π' be opt solution to subproblem P'. Then Π' together with i at time \hat{t} is opt solution to P.

• Value of Π is value of Π', plus one.

• Apply usual contradiction argument. QED

Moral: be careful what your subproblem is. You may need to generalize your problem defn to make an inductive proof go through.
4 A Fast Implementation

How can we implement this algorithm efficiently?

- Let \(t \) be latest free slot.
- Observe that \(t \) decreases monotonically – we always schedule something in latest free slot for any job.
- Each time \(t \) decreases, it may pass \(e_i \) for one or more jobs \(i \). These jobs join eligible set \(\Sigma \).
- \(t \) may also pass \(s_i \) for one or more unscheduled jobs. These jobs are deleted from \(\Sigma \) and are unschedulable.
- At any time, we want the job in \(\Sigma \) with largest \(s_i \).

These observations suggest the right data structure.

- Make sorted list \(L \) of jobs in \(P \) in decreasing order by \(e_i \).
- \(t \leftarrow \infty \)
- Let \(Q \) be a max-first priority queue, keyed by job start times.
- Repeat following loop until \(t = 0 \) or \(L \) is empty:
 - If \(Q \) is empty, \(t \leftarrow \) ending time of next job in \(L \).
 - Otherwise, \(t \leftarrow t - 1 \).
 - Move all jobs \(j \) with \(e_j = t \) from \(L \) to \(Q \).
 - \(i \leftarrow Q.\text{ExtractMax}() \)
 - Schedule job \(i \) at time \(t \)
 - Extract and discard any jobs with start time \(t \) from \(Q \).

Running time?

- Let \(n \) be number of jobs in \(P \).
- Each job is added to \(Q \) exactly once and removed exactly once.
- Total cost: \(O(n \log n) \) for binary heap.
- \(t \) is decremented only as many times as a job is scheduled.
- Total cost: \(O(n) \).
- List must initially be sorted.
- Total cost: \(O(n \log n) \).
- Conclude that overall cost is \(O(n \log n) \).