1 2-Machine Scheduling With Costs

Let’s consider new variant of multiprocessor scheduling problem.

- Given set of \(n \) jobs.
- Each job must be run on one of two machines \((m = 2) \).
- Jobs cannot be split across machines.
- Job \(i \) takes time \(\ell_{i1} \) on machine 1, or \(\ell_{i2} \) on machine 2.
- **Goal**: assign jobs to machines to minimize time at which last job finishes.
- As before, if \(\ell_{i1} = \ell_{i2} \) for all \(i \), problem is same as unweighted case, which is NP optimization problem.
- Again, however, approximation we’ve seen for unweighted case does not work for weighted case!
- Will derive a new approximation algorithm using LP.

2 Formulating an ILP for Scheduling

First, let’s formulate the problem as an ILP.

- For each job \(i \), define indicators \(x_{i1} \) and \(x_{i2} \).
- \(x_{ij} \) is 1 if job \(i \) runs on machine \(j \), 0 otherwise.
- Every job runs somewhere, and no job runs on both machines, so for each job \(i \),
 \[x_{i1} + x_{i2} = 1. \]
- (We also enforce \(x_{ij} \geq 0 \), as for all LPs. We do not separately enforce \(x_{ij} \leq 1 \), as it follows from the other constraints.)
- Now, we use a trick to minimize the largest finishing time.
- Let \(t \) be a variable representing time at which last job finishes.
Clearly, for $1 \leq j \leq 2$, we have
\[
\sum_i l_{ij} \cdot x_{ij} \leq t
\]
since all the jobs on each machine must finish by time t.

- Objective function to be minimized is simply “t”.
- In a feasible ILP soln, x_{ij}s specify which jobs run on each machine.
- (Technically, an ILP would require variable t to be integer as well, but problem is still hard if we let t be real but require x’s to be integer.)

Consider the LP relaxation of this ILP.
- Each x_{ij} is between 0 and 1, and they add to 1 for any job.
- Effectively, LP may split each job across two machines, running part of it on each.
- This is not allowed in our problem, or in ILP.
- How does the “split solution” help us solve the ILP well?
- Will show that LP solution is “almost” integer, then show how to fix up the non-integer part.
- More specifically, we will show that in LP solution, most variables do not need to be rounded!

3 Analysis of LP (Lack of) Rounding

To begin, need one important fact about linear programming.

- Suppose we have a linear programming problem P over a set X of k variables.
- In general, jth constraint of P has form
 \[
 \sum_i a_{ij} x_i \text{ op } b_j.
 \]
 where “op” is one of \leq, \geq, or $=$.
- **Defn**: solution X makes jth constraint *tight* if
 \[
 \sum_i a_{ij} x_i = b_j.
 \]
 That is, X satisfies jth constraint with equality.
- **Thm**: If any optimal feasible solution \overline{X} exists for P, then there exists such an \overline{X} that makes at least k constraints tight.

Why?
• Thm is one version of the **Fundamental Theorem of LP** – an optimal solution can always be found at a vertex of the LP polytope.

• The k tight constraints correspond to the k hyperplanes that have to intersect to form a vertex in k-dimensional space.

• NB: an $a = n$ constraint counts as *one* constraint, not two inequalities, since it is represented by just one hyperplane.

So what?

• Suppose P has c total constraints and k total variables.

• Suppose that k' of the constraints have form $x_i \geq 0$. (Clearly, $k' \leq k$ and is usually $= k$.)

• (Remaining $c - k'$ constraints are not of this form.)

• Now consider optimal soln X that makes k constraints of P tight.

• Number of *tight* constraints of the form $x_i = 0$ is then at least

$$k - (c - k').$$

• Conclude that in X, at least $k + k' - c$ variables have value 0.

Let’s count vars and constraints in our LP relaxation for scheduling.

• Suppose there are n total jobs to be scheduled.

• For each $1 \leq i \leq n$, we have variables x_{i1} and x_{i2}.

• We added one more variable for largest running time t.

• Hence, $k = 2n + 1$ total variables.

• Now for the constraints:

 - Two constraints of form

$$\sum_i \ell_{ij} \cdot x_{ij} \leq t.$$

 - For each $1 \leq i \leq n$, one equality constraint:

$$x_{i1} + x_{i2} = 1.$$

 - Finally, $k' = 2n + 1$ constraints of form $v \geq 0$.

Hence, a total of $c = 3n + 3$ constraints.

• Conclude that in an optimal solution X, at least $(2n+1) + (2n+1) - (3n+3) = n - 1$ variables are 0.

• t cannot feasibly be 0 if there are any jobs of nonzero length.
Hence, \(n - 1 \) of the \(x_{ij} \)'s are zero.

But \(x_{i1} \) and \(x_{i2} \) cannot both be 0.

Conclude that, for at least \(n - 1 \) values of \(i \), one of \(x_{i1} \) and \(x_{i2} \) is 0, and the other is 1.

(Note that we could have dropped constraint \(t \geq 0 \) from the LP, since it is implied by other constraints; this does not change our analysis because it reduces both \(c \) and \(k' \) by one.)

Hence, an optimal solution to the LP relaxation does not split at least \(n - 1 \) of \(n \) jobs, and so leaves at most one job split between machines.

4 The Full Algorithm

- Algorithm LP-MPSCHED takes \(n \) jobs and 2 processors.
- Form ILP as defined previously over variables \(X = \{t, x_{11}, x_{12}, \ldots, x_{n1}, x_{n2}\} \).
- Solve the LP relaxation, obtaining LP optimum \(X \).
- For every integral pair \(x_{i1}, x_{i2} \), assign each job \(i \) to machine 1 if \(x_{i1} = 1 \) or machine 2 if \(x_{i2} = 1 \).
- If no non-integral \(x_{ij} \) exists, we are done. Otherwise, suppose some \(x_{qj} \) is not integral.
- Assign job \(q \) to the machine on which it takes the least time.

Claim: schedule returned by LP-MPSCHED has length at most twice the optimum.

- Pf: Define

\[
T(X) = \max \sum_i \ell_{ij} x_{ij}
\]

to be objective value for LP solution \(X \).

- Let \(X^* \) be ILP optimum; let \(\overline{X} \) be LP optimum; and let \(\hat{X} \) be algorithm’s solution.
- We know that \(T(\overline{X}) \leq T(X^*) \) (LP OPT \(\leq \) ILP OPT).
- Now for upper bound!

- Consider (non-feasible) solution \(X' \) obtained by removing split job \(q \) from \(\overline{X} \) entirely, that is, setting \(\overline{x}_{q1} = \overline{x}_{q2} = 0 \).
- Note that \(T(X') \leq T(\overline{X}) \leq T(X^*) \).
- Now let \(\ell_q = \min(\ell_{q1}, \ell_{q2}) \).
- Any feasible schedule includes job \(q \), so \(\ell_q \leq T(X^*) \).
- Algo’s soln takes solution \(X' \) and adds job \(q \) to its least expensive processor, incurring added cost at most \(\ell_q \) for the solution.
• Hence, we have

\[T(\tilde{X}) \leq T(X') + \ell_q \leq T(X^*) + T(X^*) = 2T(X^*). \]

Conclude that LP-MPSCHED is a 2-approximation. QED

With some work, can extend this algorithm into a 2-approximation for weighted MP scheduling on an arbitrary number of processors.