1 My First NP-Complete Problem

We need to start somewhere.

- How can you prove that a problem Q is as hard as any problem in NP?
- Must show a reduction from an arbitrary problem in NP to Q.
- Idea: we will identify a problem whose solution can be used to simulate a general-purpose computer.

On to the problem definition.

- Consider the set of all propositional Boolean formulas ϕ over the connectives \land, \lor, and \neg.
- Example:
 \[\phi = (x \land y) \lor (\neg x \land z) \]
- Each propositional variable may be assigned a value of true or false.
- Depending on values assigned to vars, formula may be true or false.
- If assignment A of values to variable makes formula ϕ true, we say that A satisfies ϕ.
- Example: if $x = \text{false}$, $y = \text{false}$, and $z = \text{true}$, then ϕ is true.
- Not every formula has a satisfying assignment!
- Example:
 \[\psi = ((x \land y) \lor (\neg x \land z)) \land \neg(y \lor z) \]
 is unsatisfiable.
- Problem (SAT): given a Boolean formula ϕ on variable set $X = \{x_1 \ldots x_n\}$, does there exist an assignment to X that satisfies ϕ?
2 SAT is NP-Complete, Part 1

Thm: SAT is NP-complete.

- First, let’s check that SAT is in NP.
- A certificate for formula ϕ is a satisfying assignment A to ϕ’s variables!
- If ϕ uses all its variables, it certainly includes $\Omega(|A|)$ symbols, so A has size polynomial in ϕ.
- Moreover, we can verify ϕ by plugging in the assignment and evaluating the formula!
- Can be done in time proportional to size of ϕ: evaluate logical expressions from the inside out, taking constant time per logical operation in ϕ. QED

OK, but why is SAT complete for NP?

- **Claim:** let L be any problem in NP. Then $L \leq_p \text{SAT}$.
- **Pf:** Start from definition of NP.
 - For every $x \in L$, there exists a certificate c of size polynomial in x.
 - Also, there exists a verification algorithm $V(x,c)$ that validates that $x \in L$ in time polynomial in $|x|$ and $|c|$.
- **Idea:** given an input z to problem L, reduction f constructs a formula $\phi(z)$ of size $\text{poly}(|z|)$.
 - $\phi(z)$ will be satisfiable iff there exists a polynomial-sized certificate c, such that $V(z,c)$ returns true.
 - But by defn of NP, c exists for z iff $z \in L$.
 - Hence, we will have that $z \in L$ iff $\phi(z) \in \text{SAT}$.

Now all we have to do is to construct $\phi(z)$! But how?

- Algorithm V terminates in a polynomial number of steps in its input size when run on a computer.
- What the heck does “run on a computer” mean?
 - (Formally, run on a Turing machine, but let’s not go there.)
 - A reasonable computer has the following properties:
 1. A computer runs a program composed of machine instructions that read and write a *store* (memory, registers, and PC, if you like)
 2. Each step of an algorithm is one of a fixed, finite set of instructions.
 3. For some constant m, a single instruction reads and writes at most m bits of store.
4. Instruction executed each cycle is defined by a program counter, which is part of the store.

5. When a computer runs \(V \) on input \(z, c \) this input is written at the beginning of the store (first \(c \), then \(z \)). All other bits are initially set to 0.

6. When \(V \) terminates, a certain bit in the store, say the \(i^* \)th bit, contains its result, which is “true” or “false.”

 - This computational model is simple enough for our needs.
 - \(\phi(z) \) will describe execution of \(V \) on such a computer given input \(z \) and a certificate of size at most polynomial in \(|z| \).

Before we begin, some important facts to bound running time and space of \(V \).

- \(V(z, c) \) terminates in at most \(|z|^a |c|^b \) steps, for some constants \(a \), and \(b \).
 (Follows because \(V \) runs in time polynomial in its input size)

- If there exists a certificate \(c \) for which \(V(z, c) \) answers true, then there exists such a \(c \) of size at most \(r = |z|^d \), for some constant \(d \).
 (Follows because \(c \) is of size polynomial in \(|z| \).)

- Hence, if \(V(z, c) \) answers true for any \(c \), it does so for some \(c \) in at most \(n = |z|^{a+bd} \) steps.

- Finally, in this many steps, a computer running \(V \) can read and write at most \(mn \) total bits of store.

- WLOG, assume that complete state of computation is described by first \(mn \) bits of store.

- Remember: by our defns, both \(n \) and \(mn \) are \(\text{poly}(|z|) \).

3 SAT is NP-Complete, Part 2

On to construction of \(\phi(z) \!

- Define Boolean variable \(b_{i,t} \) to be the value of bit \(i \) of the store after \(t \) steps of computation.

- To describe entire state of store at time \(t \), we need to specify values of bits \(b_{1,t} \ldots b_{mn,t} \).

- Value of any bit at time \(t \) depends on state of store at time \(t-1 \).

- There exists some boolean function \(f_{i,t} \) such that
 \[
 b_{i,t} = f_{i,t}(b_{1,t-1} \ldots b_{mn,t-1})
 \]

- We record this fact in the following formula \(F_{i,t} \):
 \[
 b_{i,t} \iff f_{i,t}(b_{1,t-1} \ldots b_{mn,t-1}).
 \]
• If we specify store at time $t - 1$, formula $F_{i,t}$ is satisfied iff bit i at time t is consistent with what V would compute given the store at time $t - 1$.

• We claim that size of function $f_{i,t}$, and hence of formula $F_{i,t}$, is polynomial in $|z|$.

• Indeed, a fixed instruction’s modification of bit i depends on only a constant number (m) of bits of the store, so we can write a constant-sized description $f_{i,t}^j$ assuming we execute the jth instruction of program V at time t.

• Moreover, which instruction we execute at time t is determined by the program counter, and there cannot be more than $n (= \text{poly}(|z|))$ possible instructions if, as we assumed above, we do not run V for more than n steps.

• Conclude that $f_{i,t}$ can be written as a disjunction of at most n formulas $f_{i,t}^j$ selected among based on the PC value j, and so it has size $\text{poly}(|z|)$.

• To describe evolution of entire store from $t - 1$ to t, we write a formula E_t that describes what happens to each of its bits:

$$E_t = F_{1,t} \land \ldots \land F_{mn,t}$$

Note that E_t has size $O(mn)$, which is poly$(|z|)$.

• Finally, we set

$$\alpha = E_1 \land \ldots \land E_n \land b_{i^*n}.$$

• When is α satisfiable?

• Precisely when there are values for all $b_{i,0}$, the initial state of the store, such that after n steps, V’s output bit is true.

• Note that α has size $O(mn^2)$, which is still poly$(|z|)$.

We’re almost there.

• At beginning of computation, we want to specify that store contains the string $\langle c \rangle \cdot \langle z \rangle \cdot 00000 \ldots$, that is, alleged certificate c, followed by input z, followed by zeros.

• First r bits of initial store, $b_{1,0} \ldots b_{r,0}$, specify c.

• Let $X = \langle z \rangle \cdot 00000 \ldots$

• For each remaining bit j, $r + 1 \leq j \leq mn$, let

$$L_j = \begin{cases} b_{j,0} & \text{if bit } j - r \text{ of } X \text{ is 1} \\ -b_{j,0} & \text{if bit } j - r \text{ of } X \text{ is 0} \end{cases}$$

• Set $S_0(z) = L_{r+1} \land \ldots \land L_{mn}$.

• Finally, set

$$\phi(z) = \alpha \land S_0(z).$$

• Note that $\phi(z)$ has size $O(mn^2 + mn) = O(mn^2)$, which is poly$(|z|)$.
• Given \(z \), can generate \(\phi(z) \) in time \(\text{poly}(|z|) \) by computing \(S_0(z) \), then adjoining the fixed formula \(\alpha \) to it.

• When is \(\phi(z) \) satisfiable?

• \(S_0(z) \) forces initial bits of store, other than input \(c \), to be \(z \) followed by 0’s.

• Hence, \(\phi(z) \) is satisfiable precisely when there exist values for remaining input bits \(b_{1,0} \ldots b_{r,0} \) that cause \(b_{i^*,n} \) to become true!

• In other words, \(\phi(z) \) is satisfiable iff there exists a certificate \(c \) of length at most \(r \) for which \(V(z,c) \) is true!

• To conclude, \(\phi(z) \in \text{SAT} \) iff \(z \in L \). QED