1 Definition of Reduction

Even if I can’t prove a problem hard in an absolute sense, I can prove that it is at least as hard as another problem.

- Let L and L' be two decision problems.
- Say that L' polynomially reduces to L, denoted $L' \leq_p L$, if there exists a function $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$ such that
 1. f runs in time polynomial in its input size
 2. For every $x \in \{0, 1\}^*$, $x \in L'$ iff $f(x) \in L$
- Recall that xs are problem instances.
- So, f turns instances of problem L' into instances of problem L.

How about an example?

- Recall problem CLIQUE(G, k): given an undirected graph G and integer k, does G contain a complete subgraph on at least k vertices?
- A related problem: ISET(G, k): given an undirected graph G and integer k, does G contain an independent set on at least k vertices?
- (An independent set is a subgraph in which no two vertices have an edge between them.)

Lemma: ISET \leq_p CLIQUE.

Pf: Let (G, k) be an input to ISET. Define f as follows.

- Let G' be a graph with the same vertex set as G, such that for each pair of vertices u, v, edge (u, v) is in G' iff it is not in G.
- Set $f((G, k)) = (G', k)$.

• Now \(f \) runs in worst-case time \(\Theta(|G|^2) \), so it is clearly polynomial in its input size.

• **Claim 1**: If \((G, k) \in \text{ISET}\), then \((G', k) \in \text{CLIQUE}\).

• **Pf**: If \(G \) contains an independent set of size \(k \), then no pair of vertices in this subgraph is joined by an edge.

• By construction of \(G' \), all pairs in the set will be joined by edges in \(G' \), yielding a \(k \)-clique. QED

• **Claim 2**: If \((G', k) \in \text{CLIQUE}\), then \((G, k) \in \text{ISET}\).

• **Pf**: if \(G' \) contains a clique of size \(k \), then every pair of vertices in this subgraph is joined by an edge.

• By construction of \(G' \), no pair in the set was joined by an edge in \(G \), so the subgraph forms an iset in \(G \). QED

• Note four main steps in the reduction:
 1. Specify the transformation \(f \)
 2. Prove that \(f \) runs in time polynomial in its input size.
 3. Prove one direction of the iff: \(x \in L' \rightarrow f(x) \in L \).
 4. Prove the other direction of the iff: \(x \in L' \leftarrow f(x) \in L \).

So what?

• Suppose \(L' \leq_p L \), and let \(f \) be as above.

• Let \(M \) be an algorithm to decide \(L \). Using \(M \) and \(f \), we can implement an algorithm \(M' \) to decide \(L' \).

• Given an input \(x \), implement \(M' \) as follows:
 1. Compute \(y = f(x) \).
 2. Compute the result \(r = M(y) \).
 3. Return \(r \).

• By properties of \(f \), \(x \in L' \) iff \(M(y) = \text{true} \).

• Moreover, suppose \(M \) runs in time polynomial in \(|y|\).

• \(f \) is also polynomial-time, so \(M' \) runs in time polynomial in \(|x|\)! We have proven that . . .
Lemma: if $L \in P$, and $L' \leq_p L$, then $L' \in P$.

(Hence, if L is easy, so is L'.)

Equivalently: if $L' \notin P$ and $L' \leq_p L$, then $L \notin P$.

(Hence, if L' is hard, so is L.)

2 NP-Completeness

Let’s get back to the whole $P=NP$ business.

Defn: a decision problem L is said to be NP-complete if

1. $L \in NP$.
2. For every $L' \in NP$, $L' \leq_p L$.

Can read second condition as “L is as hard as any problem in NP.”

Hence, if L satisfies only condition 2, we say that L is NP-hard.

(Condition 1 is also necessary – an NP-hard problem need not be in NP!)

What can we say about NP-complete problems?

Fact 1: let L be a decision problem, and let L' be an NP-complete problem.

If $L' \leq_p L$, then L is NP-hard.

If we also know that $L \in NP$, then L is NP-complete.

(Proof follows by transitivity of polytime reduction.)

Fact 2: if any NP-complete problem is in P, then $P = NP$.

Pf: Suppose L is NP-complete. For any $L' \in NP$,

$$L' \leq_p L.$$

Hence, if $L \in P$, then $L' \in P$. QED

Contrapositive says: if $P \neq NP$, then no NP-complete problem is in P.

We don’t know whether $P = NP$, however:

1. It’s really hard to answer this question, so you are not likely to do so by finding a polynomial-time algorithm for an NP-complete problem.
2. Most people conjecture that $P \neq NP$.

In conclusion, NP-complete problems are practically impossible to solve in polynomial time.

(Is there such a thing as an NP-complete problem? Hold on...)
3 What about Optimization?

Oh wait, this is a class on optimization.

- Let Q be an optimization problem, and let $Q(x)$ be the value of an optimal (maximal) feasible solution for input x.

- Let $\text{DEC}_Q(x, y)$ be the corresponding canonical decision problem: is there a feasible solution to x with value at least y?

- **Defn:** if $\text{DEC}_Q(x, y)$ is NP-complete, Q is said to be an **NP-optimization problem**.

- **Claim:** Let Q be an NP-optimization problem. Suppose there exists an algorithm to compute $Q(x)$ in time polynomial in $|x|$. Then $P = NP$.

- **Pf:** suppose we can compute $Q(x)$ in time polynomial in $|x|$.

- The following algorithm solves $\text{DEC}_Q(x, y)$:

 1. Compute $y^* = Q(x)$.
 2. If $y \leq y^*$, return true; else, return false.

- By assumption, we can find y^* in time polynomial in $|x|$, so we can solve $\text{DEC}_Q(x, y)$ in time polynomial in $|x|$ and $|y|$.

- But $\text{DEC}_Q(x, y)$ is NP-complete; hence, $P = NP$. QED

Conclusion: NP-optimization problems, like NP-complete decision problems, are **practically impossible** to solve (exactly) in polynomial time.

4 The Program

I haven’t actually shown you that NP-complete problems exist.

- First, we will sketch a proof that *one* NP-complete problem exists: Boolean formula satisfiability (“SAT”).

- (follows Cook, 1971)

- Then, we will prove a bunch of other problems NP-complete using reduction arguments.

- Your job is to learn to do your own reduction arguments.