WARNING: if you haven’t at least tried hard to solve the practice problems before reading these solutions, you are missing the point. If you can’t make *any* progress, talk to me or to the TAs before reading these solutions. Otherwise, you should come up with a solution of your own that you can compare to the one shown here.

1. Consider the following LP-rounding algorithm for P. First, compute the LP optimum \bar{X}. Then, form an integer solution \hat{X} as follows: for every i, if $\bar{x}_i > 0$, set $\hat{x}_i = 1$. Return the solution \hat{X}.

 We first note that \hat{X} is feasible. Indeed, every constraint in the problem is a lower bound, so if the constraint is satisfied in the (feasible) LP optimum \bar{X}, then increasing the values of the variables cannot make it unsatisfied.

 To show the claimed ratio, let $S(X) = \sum_i c_i \cdot x_i$ be the value of any solution to P. Let X^* be an optimal integer-valued solution to P. We know that $S(\bar{X}) \leq S(X^*)$, since the LP optimum is no worse than the ILP optimum. To obtain an upper bound, note that, because no non-zero \bar{x}_i is less than $1/k$, our rounding procedure increases the value of all such \bar{x}_i by a factor of at most k. Conclude that

 $S(\hat{X}) = \sum_i c_i \cdot \hat{x}_i$
 $\leq \sum_{\bar{x}_i > 0} c_i \cdot k \cdot \bar{x}_i$
 $= k \sum_{\bar{x}_i > 0} c_i \cdot \bar{x}_i$
 $= kS(\bar{X})$
 $\leq kS(X^*)$.

2. **(a)** The generalization of the ILP for m machines includes the following constraints:
 - For each job i, $\sum_j x_{ij} = 1$.
 - For each machine j, $\sum_i p_{ij} x_{ij} \leq t$.

 There are now $nm + 1$ variables (t plus indicators for each job, for each machine), $n + m$ “nontrivial” constraints, and $nm + 1$ constraints of the form $v \geq 0$. Hence, there exists an optimal solution to the LP relaxation of this ILP that makes at least

 $nm + 1 - (n + m)$

 variables zero. Now t cannot be zero, so conclude that at most $n + m - 1$ of the x_{ij}s can be nonzero.
Now, how many jobs can be split across machines? Let a and b be the number of split and unsplit jobs, respectively. We have that $a + b = n$, since there are n total jobs. Each split job makes at least 2 x_{ij}s nonzero, while each unsplit job makes exactly one variable nonzero, so we have that $2a + b \leq n + m - 1$. Subtracting the equation from the inequality gives us $a \leq m - 1$; that is, at most $m - 1$ jobs can be split.

(b) We generalize our two-machine algorithm as follows. First, set up the general ILP with constraints as described above and objective t. Second, solve the LP relaxation to obtain an LP solution X. Third, we construct a fully integral solution as follows:

- Let S be the set of at most $m - 1$ jobs split by the LP solution, and let N be the remaining jobs.
- Let X_N be the (integral) schedule given by X to the jobs in N.
- Consider all possible ways of scheduling the jobs of S on m, and let X_S be the optimal solution found.
- Finally, place the jobs of N and S on the machines specified by X_S and X_N, respectively, and return the joint schedule \hat{X}.

We claim that this algorithm is a 2-approximation. Let $S(X)$ be the max length of schedule X, and let X^* be an optimal schedule. Because the schedule X_N is a subset of X, we have

$$S(X_N) \leq S(X) \leq S(X^*).$$

Moreover, because S is a subset of the input set of jobs, we have

$$S(X_S) \leq S(X^*).$$

Conclude that

$$S(\hat{X}) \leq S(X_S) + S(X_N) \leq S(X^*) + S(X^*) = 2S(X^*).$$

The cost of the algorithm includes $O(mn)$ to set up the ILP, the cost of solving the LP, the $O(nm)$ cost of identifying the sets N and S, and the cost of trying all possible schedules for S. To bound the number of such schedules, note that the number of ways to assign $m - 1$ jobs to m machines is m^{m-1}, and that we can surely determine the cost of each such schedule in time $O(m)$. Conclude that the cost of the algorithm is $O(mn + m^m)$, which is fine because m is a constant!

Note: there is actually a 2-approximation algorithm for any number of machines that is polynomial in both n and m. The algorithm relies on a faster way to find a good assignment of the $m - 1$ split jobs to processors. For details, see Chapter 17 of Vazirani’s book, or Chapter 1 of Hochbaum’s book.

3. (a) Let $S \subseteq S'$ and $x \notin S'$ be given. First, it is clear that g is monotone, since if $f(S) \leq f(S')$, then this inequality continues to hold if we replace any value $> c$ on either side by c.

To see submodularity, observe first that by our monotonicity constraints, one of the following two total orders holds:

$$f(S) \leq f(S \cup \{x\}) \leq f(S') \leq f(S' \cup \{x\}),$$

or

$$f(S) \leq f(S') \leq f(S \cup \{x\}) \leq f(S' \cup \{x\}).$$
Now suppose we again replace any value \(c > c \) by \(c \). Under the first total order, if \(c \leq f(S') \), then the difference \(g(S' \cup \{x\}) - g(S') \) is 0, so submodularity must hold for \(g \). Otherwise, \(g(S' \cup \{x\}) - g(S') \) is still \(\leq f(S') - f(S' \cup \{x\}) \), which is \(< f(S) - f(S \cup \{x\}) \) by submodularity of \(f \); hence \(g \) is still submodular.

A similar argument can be made for the second total order, except that if \(c < f(S \cup \{x\}) \), both the differences \(f(S) - f(S \cup \{x\}) \) and \(\leq f(S') - f(S' \cup \{x\}) \) will be reduced – but the latter will be reduced by more, and hence submodularity of \(g \) follows from that of \(f \).

(b) Let \(S \subseteq S' \) and \(x \not\in S' \) be given. Let \(V = U - S - \{x\} \), and let \(V' = U - S' - \{x\} \). Observe that \(V' \subseteq V \), and hence by submodularity of \(f \),

\[
f(V \cup \{x\}) - f(V) \leq f(V' \cup \{x\}) - f(V').
\]

Expanding the definitions of \(V \) and \(V' \), we have

\[
f(U - S - \{x\} \cup \{x\}) - f(U - S - \{x\}) \leq f(U - S' - \{x\} \cup \{x\}) - f(U - S' - \{x\}),
\]

or, to simplify slightly,

\[
f(U - S) - f(U - S - \{x\}) \leq f(U - S') - f(U - S' - \{x\}).
\]

Finally, substituting \(\overline{f}(S) = f(U - S) \) gives us

\[
\overline{f}(S) - \overline{f}(S \cup \{x\}) \leq \overline{f}(S') - \overline{f}(S' \cup \{x\}).
\]

Multiplying each side by \(-1\) yields exactly the definition of submodularity for \(G \).