Outline of this lecture:

1. Summing Example
2. Hyperobjects
3. Series and Parallel Relations

1 Summing Example

\[
\text{SUM}(n)
\]
1 \quad \text{result} = 0
2 \quad \text{for } i \leftarrow 0 \text{ to } n
3 \quad \text{do result} \leftarrow \text{result} + \text{compute}(A[i])
4

If we want to achieve parallelism, we need to be careful of race conditions. Consider the following cilk code

\[
\text{CILK}_\text{SUM}(n)
\]
1 \quad \text{result} = 0
2 \quad \text{cilk_for } i \leftarrow 0 \text{ to } n
3 \quad \text{do result} \leftarrow \text{result} + \text{compute}(A[i])
4

Determinacy Race exists in the cilk code. Also consider another cilk code in the following.

\[
\text{SUM}(n)
\]
1 \quad \text{mutex } L
2 \quad \text{result} = 0
3 \quad \text{cilk_for } i \leftarrow 0 \text{ to } n
4 \quad \text{do temp} \leftarrow \text{compute}(myArray[i])
5 \quad \text{L.lock}()
6 \quad \text{result} \leftarrow \text{result} + \text{temp}
7 \quad \text{L.unlock}()
8

While there is no data race in the above code, there is still a determinacy race. Additionally, we suffer from lock overhead and lock contention, which can destroy the benefits of parallelism.
2 Hyperobjects

Cilk provides hyperobjects, such as reducers, to mitigate determinacy races on local variables without the need for locks

\[
\text{SUM(n)}
\]

1 \hspace{1em} \text{res} = 0
2 \hspace{1em} \text{cilk} :: \text{reduce} < \text{cilk} :: \text{opadd} < \text{int} >> \text{result}_r()
3 \hspace{1em} \text{result}_r.\text{move_in}(\text{res})
4 \hspace{1em} \text{cilk_for} i \leftarrow 0 \text{ to } n
5 \hspace{1em} \text{do} \hspace{1em} \ast result_r \leftarrow \ast result_r + \text{compute(myArray[i])};
6 \hspace{1em} \text{result}_r.\text{move_out}(\text{res})

Intuition Behind Reducers

A reducer is defined over an associative operation, such as addition in the example above. Threads can update a reducer, as each worker has its own view of the reducer. The cilk runtime system is responsible for keeping track of these views, and combining them when appropriate.

Programming With Reducers

A **monoid** is a triple \((T, \otimes, e)\) in which

1. \(T\) is a set
2. \(\otimes\) is an associative binary operator on elements of \(T\)
3. \(e \in T\) is an identity element for \(\otimes\)

 where **Associative** is \(a \otimes (b \otimes c) = (a \otimes b) \otimes c\) and **Identity** is \(a \otimes e = e \otimes a = a\)

Monoids can be represented in cilk on type \(T\) objects by creating a C++ class that inherits from \(\text{cilk} :: \text{monoid_base} < T >\) and defines

1. A member function \text{reduce()} that implements the binary operator \(\otimes\)
2. A member function \text{identity()} that constructs a fresh identity \(e\)
3. Other updating operations

More on Monoids

- Upon declaration, the default constructor of a reducer initializes it’s initial view with identity \(e\)
- In a parallel region, the underlying local view can be accessed by dereferencing the reducer
- The final value resulted from the updates can be safely retrieved by using the \text{move_out()} function
The `cilk::reducer` library

- `reducer::move_in`: Populates the underlying view, irrespective of what happened before that point.
- `reducer::move_out`: Extracts content out of the reducer.
- Both operations take a single object to swap content with as an argument. Therefore, the move is destructive to the content of the source.

3 Series and Parallel Relations

Series Relations

- A strand s_1 logically precedes strand s_2 ($s_1 \prec s_2$) if there exists a path from s_1 to s_2 in the computational dag. We also say that s_2 succeeds s_1 ($s_2 \succ s_1$).
 - Two strands s_1 and s_2 are in series if $s_1 \prec s_2$ or $s_2 \prec s_1$.

![Diagram showing series and parallel relations](image)

- a and b are in series ($a \prec b$)

Parallel Relations

- A strand s_1 is logically parallel to strand s_2 ($s_1 \parallel s_2$) if no path exists from s_1 to s_2 or from s_2 to s_1 in the computational dag.
a and b are in parallel (a \parallel b)

Definitions

- **Tetrachotomy Lemma**: For any two strands s_1 and s_2, exactly one of the following holds:
 - $s_1 = s_2$
 - $s_1 \parallel s_2$
 - $s_1 \prec s_2$
 - $s_1 \succ s_2$

- **Transitivity Lemma**: $s_1 \prec s_2$ and $s_2 \prec s_3$ implies $s_1 \prec s_3$.

- **Peers**: The peers of a strand s is the set of strands that are logically parallel to s.

the peers of c are highlighted in peer above

Stable Views

- **Serial Walk** of a computation dag is the list of instructions encountered in a depth-first execution in which spawn edges are followed before continue edges

- **Stable-View Theorem**: Let r be a reducer with an associative operator \otimes. Consider a series walk of G, and let a_1, \ldots, a_k be the update amount to r after strand x and strand y. Denote the view for r in x by r_x and the view in y by r_y. If $\text{peers}(x) = \text{peers}(y)$, then we have:

$$r_y = r_x \otimes a_1 \otimes a_2 \otimes \ldots \otimes a_k$$

In this case, we say that r_y is stable with respect to r_x
Corollary: If \(r \) is only updated through its associative operator \(\otimes \), the result of \(a_1 \otimes ... \otimes a_k \) is deterministic

How Cilk Maintains Views

- **Upon a cilk_spawn:**
 - the child owns the view \(h \) owned by the parent before the cilk_spawn
 - the parent owns a new view \(h' \), initialized to the identity \(e \)

- **After a spawned child returns:**
 - the parent owns the child’s view \(h \), which is reduced with the parent’s view \(h' \) sometime before the cilk_sync, and \(h' \) is destroyed

Combining Hypermaps

- A worker maintains a hashtable per trace that maps from the reducer object to the appropriate local view for the trace

- An access to the view of a reducer \(r \) causes the worker to look up the local view for \(r \) in the hypermap. If the view of \(r \) does not exist in the hypermap, the worker creates a new view with value \(e \).

- When a worker finishes its subcomputation, hypermaps are combined using the appropriate reduce() functions
 - Each full frame in the steal-tree contains two place holders for hypermaps
 - Each frame in the steal-tree contains three hypermaps: user, left child(lchild), and right sibling (rsib)
 - Whenever a full frame is returning, it first combines its user with lchild and rsib (if there is one), and deposits itself into the appropriate placeholder.