Continued from last time:
Race Detection in Cilk Computations
Canonical Series-Parallel (SP) Parse Tree

F:
e_1; spawn F_1;
e_2; spawn F_2;
e_3;
sync;
e_4; spawn F_4;
e_5; spawn F_5;
e_6;
sync;
e_7; spawn F_4;
e_8; spawn F_8;
e_9;
sync;
e_10;
Lemma 1 [LCA in SP tree]: The least common ancestor (LCA) of two strands determines whether the strands are logically in series or in parallel:

- if $e < e'$ if LCA(e, e') is an S node and e is to the left of e' (e precedes e')
- if $e \parallel e'$ if LCA(e, e') is an P node.
Lemma 1 [LCA in SP tree]: The LCA of two strands determines whether the strands are logically in series or in parallel:

- if \(e \parallel e' \) if and only if \(\text{LCA}(e, e') \) is an P node.

(The other case, where \(e < e' \) is just a Corollary of this Lemma.)

Case 1 (\(\Rightarrow \)): Assume for the purpose of contradiction, \(e \parallel e' \), but their LCA is an S node.

Since the LCA is an S node, the dag \(G_1 \) containing \(e_1 \) must be connected in series with the dag \(G_2 \) containing \(e_2 \):

Then there must be a path from \(e_1 \) to \(e_2 \). Contradiction!
Lemma 1 [LCA in SP tree]: The LCA of two strands determines whether the strands are logically in series or in parallel:

- if $e \parallel e'$ if and only if $\text{LCA}(e, e')$ is an P node.

 (The other case, where $e < e'$ is just a Corollary of this Lemma.)

Case 2 (\Leftarrow): Assume for the purpose of contradiction $e < e'$, but their LCA is a P node. That means, G_1 and G_2 are connected w/ parallel composition.

Since there is a path from e_1 to e_2, there is a path from the sink of G_1 to source of G_2, making the graph cyclic. Contradiction!
Lemma 1 [LCA in SP tree]: The least common ancestor (LCA) of two strands determines whether the strands are logically in series or in parallel:

- if $e < e'$ if LCA(e, e') is an S node and e is to the left of e' (e precedes e')
- if $e \parallel e'$ if LCA(e, e') is an P node.
Overview of Nondeterminator

• A serial tool --- it executes a Cilk computation serially, but analyzes the parallel constructs for a given input.
• The program is compiled so that every load and store in the user program is instrumented.
• As the program executes, the Nondeterminator maintains:
 • a *shadow space* that keeps track of the memory accesses seen by the execution thus far;
 • an *SP-bag data structure* that keeps track of the series-parallel relationship among strands (so implicitly it’s keep track of the shape of the SP parse tree).
• Race is reported when two logically parallel strands access the same memory location in a conflicting way.
• **Guarantee:** reports a race if and only if the computation (program + input) contains a race.
The SP-Bags Data Structure

For each active procedure on the call stack, the Nondeterminator maintains an S bag and a P bag:

- **S-Bag S_F**: Contains IDs of F’s completed descendants (including F itself) that logically precede the currently executing strand.
- **P-Bag P_F**: Contains IDs of F’s completed descendants that operate logically in parallel with the currently executing strand.
The SP-Bags Data Structure

For each active procedure on the call stack, the Nondeterminator maintains an S bag and a P bag:

- **S-Bag S_F**: Contains IDs of F’s completed descendants (including F itself) that logically precede the currently executing strand.
- **P-Bag P_F**: Contains IDs of F’s completed descendants that operate logically in parallel with the currently executing strand.

When e_1 executes, $S_F = \{F_1, F_2, F_3\}$.
When e_2 executes, $S_F = \{F_1, F_2, F_3\}$ and $P_F = \{F_4, F_5\}$.
The SP-Bags Data Structure

The Nondeterminator uses a disjoint-set data structure to maintain the S and P bags of procedures on the call stack.

Definition [Disjoint-Set Data Structure (Union-Find)]: Union-Find maintains a collection \(\Sigma \) of disjoint sets. For two sets \(X \) and \(Y \), \(X \& Y \in \Sigma \implies X \cap Y = \emptyset \). For each set \(X \in \Sigma \) typically has a designated "leader" element \(x \in X \) which is used to "name" the set. The data structure maintains the collection \(\Sigma \) and answers the following queries:

- **Make-set(e):** \(\Sigma \leftarrow \Sigma \cup \{ \{e\} \} \)
 Adds a new set \(\{e\} \) into the collection \(\Sigma \).

- **Union(X, Y):** \(\Sigma \leftarrow \Sigma - \{X,Y\} \cup \{X \cup Y\} \)
 Removes individual sets \(X \) and \(Y \) and replaces them with the union of \(X \) and \(Y \).

- **Find-set(e):** Returns \(X \in \Sigma \) such that \(e \in X \). Note that sets in \(\Sigma \) is named by their leaders, so this returns the leader representing the set.
The SP-Bags Data Structure

The Nondeterminator uses a disjoint-set data structure to maintain the S and P bags of procedures on the call stack.

Definition [Disjoint-Set Data Structure (Union-Find)]: Union-Find maintains a collection Σ of disjoint sets. For two sets X and Y, $X \& Y \in \Sigma \implies X \cap Y = \emptyset$. For each set $X \in \Sigma$ typically has a designated "leader" element $x \in X$ which is used to "name" the set. The data structure maintains the collection Σ and answers the following queries:

- Make-set(e)
- Union(X, Y)
- Find-set(e)

Theorem [Operations on Disjoint-set Data structure] (Tarjan 1975): Any sequence of m operations on n sets can be performed in $O(m \ A(m, n))$, where A is the inverse Ackermann's function (a really really slow growing function).
The SP-Bags Algorithm

The SP-Bags algorithm is the algorithm used by the Nondeterminator and it performs two types of operations.

• **spawn procedure F:**
 \[S_F \leftarrow \text{Make-set}(F); \quad \text{(F is the leader)} \]
 \[P_F \leftarrow \emptyset \]

• **sync in procedure F:**
 \[S_F \leftarrow \text{Union}(S_F, P_F); \]
 \[P_F \leftarrow \emptyset \]

• **return from F' to F (F' is spawned):**
 \[P_F \leftarrow \text{Union}(P_F, S_{F'}); \]
 \(\text{(Note that } P_{F'} \text{ must be empty at this point.)} \)

The first type updates the S and P bags for all procedures on the call stack, which is triggered during the DFS traversal of the SP parse tree.
The SP-Bags Algorithm

The SP-Bags algorithm is the algorithm used by the Nondeterminator and it performs two types of operations.

Shadow memory:
- **writer[v]:** the ID of the last procedure that wrote to v.
- **reader[v]:** the ID of the a procedure that read v (not necessarily the last one).

write location v by procedure F:
- if (Find-set(reader[v]) is a P-bag
- Or Find-set(writer[v]) is a P-bag)
 then report race;
- writer[v] ← F;

read location v by procedure F:
- if (Find-set(writer[v]) is a P-bag)
 then report race;
- if (Find-set(reader[v]) is an S-bag)
 then reader[v] ← F;
 (Replace reader only when it's in an S-bag)

The second type uses the SP-bags data structure to detect determinacy races when the user program accesses a memory location.
Justification of the SP-Bags Algorithm

The SP-Bags algorithm is the algorithm used by the Nondeterminator and it performs two types of operations.

• **spawn procedure \(F \):**

 \[S_F \leftarrow \text{Make-set}(F); \ (F \text{ is the leader}) \]

 \[P_F \leftarrow \emptyset \]

Recall:

• **S-Bag \(S_F \):** Contains IDs of \(F \)'s completed descendants (including \(F \) itself) that logically precede the currently executing strand.

• **P-Bag \(P_F \):** Contains IDs of \(F \)'s completed descendants that operate logically in parallel with the currently executing strand.

This operation is valid since the S-bag of \(F \) by definition contains itself, and \(F \) has no valid child yet.
Justification of the SP-Bags Algorithm

The SP-Bags algorithm is the algorithm used by the Nondeterminator and it performs two types of operations.

- **sync in procedure F:**

 \[S_F \leftarrow \text{Union}(S_F, P_F); \]

 \[P_F \leftarrow \emptyset \]

Recall:

- **S-Bag** \(S_F \): Contains IDs of F’s completed descendants (including F itself) that logically precede the currently executing strand.

- **P-Bag** \(P_F \): Contains IDs of F’s completed descendants that operate logically in parallel with the currently executing strand.

After a sync, we switch to a strand e right after sync from some strand e' right before sync. Originally \(P_F \) contains IDs of F’s completed descendants that operate logically in parallel with e'. These procedures now must operate in series with e (and anything else that F will spawn). Thus, it's valid to move the IDs in \(P_F \) into \(S_F \).
Justification of the SP-Bags Algorithm

The SP-Bags algorithm is the algorithm used by the Nondeterminator and it performs two types of operations.

- **return from F' to F (F' is spawned):**
 \[P_F \leftarrow \text{Union}(P_F, S_{F'}); \]
 (Note that \(P_{F'} \) must be empty at this point.)

Recall:

- **S-Bag \(S_F \):** Contains IDs of F’s completed descendants (including F itself) that logically precede the currently executing strand.
- **P-Bag \(P_F \):** Contains IDs of F’s completed descendants that operate logically in parallel with the currently executing strand.

Before a function F' returns, \(P_{F'} \) is empty, since there is always an implicit sync. Also, \(S_{F'} \) contains all the logical descendants of F', which are also logical descendants of F, and can now execute in parallel with any procedures that F might spawn in the future (before the next sync).
Justification of the SP-Bags Algorithm

To understand the second type of operations, we need some lemmas first.

Recall Lemma 1 [LCA in SP tree]:

- if $e \parallel e'$ if and only if LCA(e, e') is an P node.

Lemma 2: Let strands e_1, e_2, and e_3 execute serially in order. If $e_1 \prec e_2$ and $e_1 \parallel e_3$, then $e_2 \parallel e_3$.

Proof: Suppose for the sake of contradiction that $e_2 \prec e_3$. Then, by transitivity, we'd have $e_1 \prec e_3$. Contradiction.

Note that the parallel relation \parallel, unlike precedes \prec, is not transitive.

In this tree, $e_1 \parallel e_3$ and $e_1 \parallel e_3$ but $e_1 \not\parallel e_3$.
Justification of the SP-Bags Algorithm

To understand the second type of operations, we need some lemmas first.

Recall Lemma 1 [LCA in SP tree]:
- if $e \parallel e'$ if and only if $\text{LCA}(e, e')$ is an P node.

Lemma 3 [Pseudotransitivity of \parallel]:
Let strands e_1, e_2, and e_3 execute serially in order.
If $e_1 \parallel e_2$ and $e_2 \parallel e_3$, then $e_1 \parallel e_3$.

Proof: Since we do a depth-first traversal of the tree, the only possible options for the tree that have them in the right serial order are:

In both cases, we know that both $\text{LCA}(e_1, e_2)$ and $\text{LCA}(e_2, e_3)$ are P nodes. So the $\text{LCA}(e_1, e_3)$, which is a_1, must also be a P node.
Justification of the SP-Bags Algorithm

Define $h(a)$ to be the procedure that immediately enclose strand a.

Lemma 4 [SP-Bags maintenance]: Let e_1 be executed before e_2, and let $a = \text{LCA}(e_1, e_2)$ in the SP parse tree.

- if $e_1 \prec e_2 \implies h(e_1)$ is in an S-bag($h(a)$) when e_2 executes.
- if $e_1 \parallel e_2 \implies h(e_1)$ is in a P-bag($h(a)$) when e_2 executes.

Proof sketch:
Case 1: Since a is an S-node, a must belongs to either the spine or within a sync block.

If a belongs to the spine, then e_1 belongs to a's left subtree and e_2 to a's right subtree. Either $h(e_1) = h(a)$ or $h(e_1)$ is a descendant of $h(a)$.

If $h(e_1)$ is $h(a)$, $h(e_1)$ is already in $h(a)$'s S bag.
Justification of the SP-Bags Algorithm

Define $h(a)$ to be the procedure that immediately enclose strand a.

Lemma 4 [SP-Bags maintenance]: Let e_1 be executed before e_2, and let $a = \text{LCA}(e_1, e_2)$ in the SP parse tree.

- if $e_1 \prec e_2 \Rightarrow h(e_1)$ is in an S-bag($h(a)$) when e_2 executes.
- if $e_1 \parallel e_2 \Rightarrow h(e_1)$ is in a P-bag($h(a)$) when e_2 executes.

Proof sketch:
Case 1: Since a is an S-node, a must belongs to either the spine or within a sync block.

If $h(e_1)$ is not $h(a)$, $h(e_1)$ moves up into some bags in the call stack when its ancestor returns.
Once the sync corresponds to a's left subtree executes, $h(e_1)$ moves into $h(a)$'s S bag (and stays there).
Justification of the SP-Bags Algorithm

Define \(h(a) \) to be the procedure that immediately encloses strand \(a \).

Lemma 4 [SP-Bags maintenance]: Let \(e_1 \) be executed before \(e_2 \), and let \(a = \text{LCA}(e_1, e_2) \) in the SP parse tree.
- if \(e_1 \prec e_2 \Rightarrow h(e_1) \) is in an \(S\text{-bag}(h(a)) \) when \(e_2 \) executes.
- if \(e_1 \parallel e_2 \Rightarrow h(e_1) \) is in a \(P\text{-bag}(h(a)) \) when \(e_2 \) executes.

Proof sketch:
Case 2: Since \(a \) is an \(P\)-node.

In this case, \(a \) must be within a sync block and \(e_1 \) belongs to the left subtree and \(e_2 \) to the right. At this point, the left child of a \(P \) node is always a spawned procedure \(F' \) that gets placed into \(h(a) \)'s \(P \) bag when the \(F' \) returns. Since no sync has occurred yet, \(F' \) must still be in a \(P \) bag when \(e_2 \) executes.
Proof of the SP-Bags Race Detection

Theorem [SP-Bags correctness]: The SP-Bags algorithm reports a race in a Cilk computation if and only if a determinacy race exists.

Proof sketch: The \((\Rightarrow)\) case is straight-forward. If the SP-Bags reports a race, that means it detected two strands logically in parallel that accesses the same memory location in a conflicting way. Thus, if it reports a race, a determinacy race exists.
Proof of the SP-Bags Race Detection

Theorem [SP-Bags correctness]: The SP-Bags algorithm reports a race in a Cilk computation if and only if a determinacy race exists.

Proof sketch: The (⟸) case is trickier. We want to show that if a det. race exists, the SP-Bags algorithm reports it. Let \(e_1 \parallel e_2 \) and have a race on \(v \). Assume \(e_1 \) executes before \(e_2 \). If there are several races, choose \(e_2 \) to be the race whose strand executes earliest in the serial order.

Case 1: Say \(e_1 \) writes to \(v \) and \(e_2 \) reads it.
Suppose when \(e_2 \) executes, \(\text{writer}[v] = h(e) \) for some \(e \).
If \(e = e_1 \) then we are done, since we know that \(h(e_1) \) is in a P bag of \(\text{LCA}(e_1, e_2) \) (by Lemma SP-bags maintenance).
If \(e \) is not \(e_1 \), then \(e \) must have been executed after \(e_1 \) and before \(e_2 \). Then either \(e_1 < e \), then \(e \parallel e_2 \) by Lemma 2* shown earlier.
Or \(e_1 \parallel e \), then there is already a race between \(e_1 \) and \(e \), which contradicts our assumption about \(e_2 \) being the earliest race.

* **Lemma 2:** Let strands \(e_1, e_2, \) and \(e_3 \) execute serially in order. If \(e_1 < e_2 \) and \(e_1 \parallel e_3 \), then \(e_2 \parallel e_3 \).
Proof of the SP-Bags Race Detection

Theorem [SP-Bags correctness]: The SP-Bags algorithm reports a race in a Cilk computation if and only if a determinacy race exists.

Proof sketch: The (\(\iff\)) case is trickier. We want to show that if a det. race exists, the SP-Bags algorithm reports it. Let \(e_1 \parallel e_2\) and have a race on \(v\). Assume \(e_1\) executes before \(e_2\). If there are several races, choose \(e_2\) to be the race whose strand executes earliest in the serial order.

Case 2: Say \(e_1\) writes to \(v\) and \(e_2\) writes it. This is similar to case 1.
Proof of the SP-Bags Race Detection

Theorem [SP-Bags correctness]: The SP-Bags algorithm reports a race in a Cilk computation iff a determinacy race exists.

Proof sketch: The \((\Leftarrow)\) case is trickier. We want to show that if a det. race exists, the SP-Bags algorithm reports it. Let \(e_1 \parallel e_2\) and have a race on \(v\). Assume \(e_1\) executes before \(e_2\). If there are several races, choose \(e_2\) to be the race whose strand executes earliest in the serial order.

Case 3: Say \(e_1\) reads to \(v\) and \(e_2\) writes it.

Again, suppose \(\text{reader}[v] = e\). If \(e = e_1\), then then we are done, since we know that \(k(e_1)\) is in a P bag of \(\text{LCA}(e_1, e_2)\) (by Lemma SP-bags maintenance). So, we can assume \(e \neq e_1\). There are two possibilities.

Case 3.1: \(\text{reader}[v]\) was \(e_1\) at some point, but eventually got overwritten by \(e\) (there can be some \(e'\) in \(\text{reader}[v]\) in between \(e_1\) and \(e\)). This can occur only if \(e_1 \prec e\). Since \(e_1 \prec e\) and \(e_1 \parallel e_2, e \parallel e_2\), (again by Lemma 2*) so a race is reported.

* **Lemma 2**: Let strands \(e_1, e_2, \) and \(e_3\) execute serially in order. If \(e_1 \prec e_2\) and \(e_1 \parallel e_3\), then \(e_2 \parallel e_3\).
Proof of the SP-Bags Race Detection

Theorem [SP-Bags correctness] : The SP-Bags algorithm reports a race in a Cilk computation iff a determinacy race exists.

Proof sketch: The (\(\iff\)) case is trickier. We want to show that if a det. race exists, the SP-Bags algorithm reports it. Let \(e_1 \| e_2\) and have a race on \(v\). Assume \(e_1\) executes before \(e_2\). If there are several races, choose \(e_2\) to be the race whose strand executes earliest in the serial order.

Case 3: Say \(e_1\) reads to \(v\) and \(e_2\) writes it.

Again, suppose \(\text{reader}[v] = e\). If \(e = e_1\), then then we are done, since we know that \(h(e_1)\) is in a P bag of \(\text{LCA}(e_1, e_2)\) (by Lemma SP-bags maintenance). So, we can assume \(e \neq e_1\). There are two possibilities.

Case 3.2: \(\text{reader}[v]\) was never updated to be \(e_1\). Let's assume when \(e_1\) executes, \(\text{reader}[v] = e'\). Then it must be that \(e \| e_1\) or we'd have updated \(\text{reader}[v]\). Then by Lemma Pseudotransivity of \(\|\), \(e' \| e_2\), and a race is reported.

*Pseudotransitivity of \(\|\) : \(e_1, e_2,\) and \(e_3\) execute serially in order. If \(e_1 \| e_2\) and \(e_2 \| e_3\), then \(e_1 \| e_3\).
Extensions for Parallel Race Detection
What We Need in a Det. Race Detector

• SP-Bags data structure: maintaining the series-parallel ordering of strands.

• Shadow space that contains:
 – The last writer to a location v; and
 – The last serial reader to a location v.
 (But we are totally dropping the parallel readers.)

Question: Can we extend the SP-Bags algorithm to race detect a Cilk computation executing in parallel?
Where Things Break

• The SP-Bags data structure maintenance is inherently serial: it keeps track of procedure IDs that are in series / parallel with respect to the "currently executing strand."

• The shadow memory only keeps track of the last serial reader (that the execution encounters), which is insufficient.
On-the-Fly Maintenance of Series-Parallel Relationships

The *English-Hebrew* orderings:

The nodes in the left subtree of an S-node always precede those in the right subtree.
On-the-Fly Maintenance of Series-Parallel Relationships

The *English-Hebrew* orderings:

The nodes in the left subtree of an S-node always precede those in the right subtree.

English order: the nodes in the left subtree of a P-node precede those in the right subtree.
On-the-Fly Maintenance of Series-Parallel Relationships

The *English-Hebrew* orderings:

The nodes in the left subtree of an S-node always precede those in the right subtree.

English order: the nodes in the left subtree of a P-node precede those in the right subtree.

Hebrew order: the nodes in the right subtree of a P-node precede those in the left.

Key observation:

Under a S-node:

- $E[u_{left}] < E[u_{right}]$
- $H[u_{left}] < H[u_{right}]$

Under a P-node:

- $E[u_{left}] < E[u_{right}]$
- $H[u_{left}] > H[u_{right}]$
On-the-Fly Maintenance of Series-Parallel Relationships

The *English-Hebrew* orderings:

![Diagram](image)

Observation #1:
Under a S-node:
\[E[u_{\text{left}}] < E[u_{\text{right}}] \]
\[H[u_{\text{left}}] < H[u_{\text{right}}] \]

Under a P-node:
\[E[u_{\text{left}}] < E[u_{\text{right}}] \]
\[H[u_{\text{left}}] > H[u_{\text{right}}] \]

Question: *Can we maintain the two labeling on the fly as the computation executes?*

Observation #2: One doesn't need to assign specific labels for each strand; a relative-ordering suffices.
The SP-Order Algorithm

SP-Order(X): // X is a node is the SP tree
if IsLeaf(X)
 execute strand X
return
// otherwise X is an internal node
OM-Insert(Eng, X, left[X], right[X])
if IsSNode(X)
 OM-Insert(Heb, X, left[X], right[X])
else
 OM-Insert(Heb, X, right[X], left[X])
SP-Order(left[X])
SP-Order(right[X])

To detect race between two strands, check if they are in the same relative order to each other in both Eng and Heb.

OM-Insert(L, X, Y₁, Y₂):
In the ordering L, insert new element Y₁ and Y₂ immediately after X.
The SP-Order Algorithm

SP-Order(X): // X is a node is the SP tree
if IsLeaf(X)
 execute strand X
return
// otherwise X is an internal node
OM-Insert(Eng, X, left[X], right[X])
if IsSNode(X)
 OM-Insert(Heb, X, left[X], right[X])
else
 OM-Insert(Heb, X, right[X], left[X])
SP-Order(left[X])
SP-Order(right[X])

To detect race between two strands, check if they are in the same relative order to each other in both Eng and Heb.

Naïve parallelization: the Order Maintenance data structure becomes a scalability bottleneck.
SP-Hybrid

- Recall: between successful steals, each worker's behavior mirrors the serial execution.
 - trace: the execution done by a worker between steals.

- A two-tier scheme:
 - global tier: use a global Order Maintenance data structure to maintain the ordering between traces.
 - a clever design of a concurrent data structure allows one to query the data structure without locking.
 - local tier: within a trace, query SP relationships using the SP-bags data structure.

Challenge: traces are defined dynamically as steals occur, so how do we keep track of that?
SP-Hybrid

• Recall: between successful steals, each worker's behavior mirrors the serial execution.

 trace: the execution done by a worker between steals.

• A two-tier scheme:

 global tier: use a global Order Maintenance data structure to maintain the ordering between traces.

 - a clever design of a concurrent data structure allows one to query the data structure without locking.

 local tier: within a trace, query SP relationships using the SP-bags data structure.

Challenge: traces are defined dynamically as steals occur, so how do we keep track of that?
Splitting Traces On-the-Fly

Each $U^{(i)}$ is a trace containing a set of strands.

- $U^{(1)}$: the strands that precedes X
- $U^{(2)}$: the strands that is in parallel w/ X
- $U^{(3)}$: the strands in X's left subtree (that is currently being executed by the victim)
- $U^{(4)}$: the strands in X's right subtree (initially empty and will be populated by the thief)
- $U^{(5)}$: the strands that follows X (initially empty)

Upon a steal, insert into the global tier:

English:

```
U^{(1)} -> U^{(2)} -> U^{(3)} -> U^{(4)} -> U^{(5)}
```

Hebrew:

```
U^{(1)} -> U^{(4)} -> U^{(3)} -> U^{(2)} -> U^{(5)}
```
What We Need in a Det. Race Detector

• SP-Hybrid:
 global tier: an Order-Maintenance data structure maintains the series-parallel ordering of traces.
 local tier: within a single trace, query the SP-Bags data structure.

• Shadow space that contains:
 – The last writer to a location \(v \); and
 – The last serial reader to a location \(v \).
 (But we are totally dropping the parallel readers.)
Where Things Break

• The shadow memory only keeps track of the last serial reader (that the execution encounters), which is insufficient.

Recall the lemmas we need to show that SP-Bags algorithm works correctly:

Lemma 2: Let strands e_1, e_2, and e_3 execute serially in order.
If $e_1 \prec e_2$ and $e_1 \parallel e_3$, then $e_2 \parallel e_3$.

Lemma 3 [Pseudotransitivity of \parallel]:
Let strands e_1, e_2, and e_3 execute serially in order.
If $e_1 \parallel e_2$ and $e_2 \parallel e_3$, then $e_1 \parallel e_3$.

Question: When executing in parallel, what do we need to maintain in the shadow space?
Ex: Keeping One Reader Is Not Enough

Recall how to update shadow memory:
• write location v by procedure F:
 \[\text{writer}[v] \leftarrow F; \]
 (Always update writer)

• read location v by procedure F:
 if \((\text{Find-set}(\text{reader}[v])\) is an S-bag
 then \[\text{reader}[v] \leftarrow F; \]
 (Replace only serial reader)

Say e₁, e₂, and e₃ executed in that order in parallel execution.
Say e₁ and e₂ read v and e₃ wrote to v.

When e₃ executes, reader[v] contains e₁, since e₁ \parallel e₂. We miss a race!

What if we always update the reader[v] with the last reader?
Ex: Keeping One Reader Is Not Enough

Recall how to update shadow memory:

- **write location v by procedure F:**

 \[
 \text{writer}[v] \leftarrow F;
 \]

 (Always update writer)

- **read location v by procedure F:**

 \[
 \text{if (Find-set(reader[v]) is an S-bag)}
 \]

 \[
 \text{then reader[v] \leftarrow F;}
 \]

 (Replace only serial reader)

Say \(e_1, e_2,\) and \(e_3\) executed in that order in parallel execution.
Say \(e_1\) and \(e_2\) read \(v\) and \(e_3\) wrote to \(v\).

When \(e_3\) executes, \(\text{reader}[v]\) contains \(e_1\), since \(e_1 \parallel e_2\). We miss a race!

What if we always update the \(\text{reader}[v]\) with the last reader?

Then when \(e_3\) executes, \(\text{reader}[v]\) contains \(e_2\) and we can still miss a race!
Keeping two readers

It turns out that, it's sufficient to keep two readers --- we just need to keep track of the "left-most" \(R_l \) and "right-most" reader \(R_r \) for each memory location \(v \).

When \(e \) reads \(v \):
if \(e \) comes before \(R_l[v] \) in serial order, or \(e \prec R_l[v] \)
 \[R_l[v] = e \]
if \(e \) comes after \(R_r[v] \) in serial order, or \(R_r[v] \prec e \)
 \[R_r[v] = e \]
References

[1] Nondeterminator and SP-Bags algorithms:

[2] On parallel race detection in Cilk computations:

[4] Keeping two readers for parallel race detection in fork-join multithreaded programs: