REVIEW PROBLEMS No. 27

Textbook: Problems 32.1, 32.2

Note: In question (d) of problem 32.2, the last equation should read

\[E[W_i^\pi] = E[N_i^\pi] \cdot \frac{1}{\mu_i} \quad \text{(why?)} \]

i.e., \(\mu \) should be replaced by \(\mu_i \).

Problem S27.1 Consider a system identical to the M/G/1 queue except that whenever the system empties out, service does not restart until after there are \(k \) jobs in the system, where \(k \) is a fixed parameter. Once service starts, jobs are served as in the M/G/1 queue. Establish that

1. The following steady-state probabilities verify

\[P\{\text{system empty}\} = \frac{1 - \rho}{k} \]
\[P\{\text{system non-empty and waiting}\} = \frac{(k-1)(1-\rho)}{k} \]
\[P\{\text{system non-empty and serving}\} = \rho \]

2. The average length of a busy period (non-empty system) is given by

\[E[B_{(k)}] = \frac{\rho + k - 1}{\lambda(1 - \rho)} \]

Verify that \(E[B_{(k)}] \) is equal to the sum of the time between the arrival of the first job to an empty system and the start of its service time and the duration of \(k \) average busy periods in a regular M/G/1 system \((k = 1)\).

3. Assume that we are dividing the system’s busy period into busy/waiting and busy/serving periods. Show that the average number of customers in the system in a busy/waiting period is \(k/2 \) and that it is given by the expression of Eq. (1) for the busy/serving period.

\[\frac{N_{\text{M/G/1}}}{\rho} + \frac{k - 1}{2} \quad \text{(1)} \]

where \(N_{\text{M/G/1}} \) is the average number in the system in the busy period of a regular M/G/1 queue \((k = 1)\).

[Hint: Relate the busy/serving portion of a busy period to \(k \) independent busy periods of the corresponding regular M/G/1 queue \((k = 1)\).]

4. The average number in the system is

\[N_{\text{M/G/1}} + \frac{k - 1}{2} \]

Note: Problem S27.1 is a review of concepts seen earlier, and not about the material of Chapter 32.