
CSE 538 – Fall 2016 Midterm
4 Problems – 65 points total

Your Name:



Figure 1: Discrete Time Markov Chain.

Problem 1 [10 points] Consider the Discrete Time Markov Chain (DTMC) of Fig. 1, where the parameters p
and q satisfy p+ q = 1.

1. [5 points] Does the chain admit a limiting distribution? If yes, does it for all combinations of p and q and
why? If no, why not?

The chain does not admit a limiting distribution as it is periodic for all values of p and q. If pq 6= 0, the
period is 2, and if pq = 0, the period is also 2 but for different reasons. When p = 1 and q = 0, only
states 4 and 5 have a non-zero (stationary) probability, which is 1/2. Conversely, when p = 0 and q = 1,
only states 0 and 1 have a non-zero (stationary) probability, which is again 1/2.

2. [5 points] Can you find values for p and q such that π0 = π1 = π2 = π3 = 0 and π4 = π5 = 1/2. Hint:
What does the balance equation for state 5 tells you?

The balance equation for state 5 states that pπ4 = π5, so that π4 = π5 is only feasible if p = 1 and,
therefore, q = 0. Under theses assumptions, we readily get that π0 = π1 = π2 = π3 = 0, i.e., the first four
states are transient, and π4 = π5 = 1/2.
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Problem 2 [25 points] Consider the closed system of Fig. 2 that consists of a dual CPU sub-system (CPU1+CPU2),
where CPU1 can process 2 jobs per unit of time and CPU2 can process 4 jobs per unit of time, followed by a dual
Disk sub-systems (Disk1+Disk2), where Disk1 can handle 1 job R/W operations per unit of time and Disk2 can
handle 5 job R/W operations per unit of time. New jobs are assigned to CPU1 with probability p and to CPU2
with probability 1− p. Similarly, when leaving the CPU sub-system, jobs are assigned to Disk1 with probability
q and to Disk2 with probability 1− q. The multi-programming level for the system is N = 50.

Figure 2: Closed system.

1. [15 points] Derive a tight upper bound for the number of jobs in the system, N∗, that corresponds to the
threshold between low and high loads (multi-programming level or N value as per Theo. 7.1).
Hint: Consider the CPU and Disk sub-systems separately and determine their individual thresholds.

In order to characterize N∗, we first characterize performance for the CPU and Disk sub-systems sepa-
rately. Specifically, we have

E[VCPU1] = p,E[VCPU2] = 1− p, E[SCPU1] =
1

2
, E[SCPU2] =

1

4

E[VDisk1] = q, E[VDisk2] = 1− q, E[SDisk1] = 1, E[SDisk2] =
1

5

This implies

E[DCPU1] =
p

2
, E[DCPU2] =

1− p
4

E[DDisk1] = q, E[DDisk2] =
1− q
5

,

and therefore, we have

DCPU =
p

2
+

1− p
4

=
p+ 1

4
, and DCPU

max = max

(
p

2
,
1− p
4

)
,

and

DDisk = q +
1− q
5

=
4q + 1

5
and DDisk

max = max

(
q,

1− q
5

)
.

Focusing on the CPU sub-system first, we have

N∗CPU =
DCPU
DCPU

max

=
p+1
4

max
(
p
2 ,

1−p
4

) =


p+1
4

1−p
4

= p+1
1−p ≤

4
3
2
3

= 2 p ≤ 1
3

p+1
4
p
2

= p+1
2p = 1

2 + 1
2p ≤

1
2 + 3

2 = 2 p ≥ 1
3

So in all cases N∗CPU ≤ 2.
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Following a similar approach for the Disk sub-system, we get

N∗Disk =
DDisk
DDisk

max

=
4q+1
5

max
(
q, 1−q5

) =


4q+1

5
1−q
5

= 4q+1
1−q ≤

4
6
+1
5
6

= 10
5 = 2 q ≤ 1

6
4q+1

5
q = 4

5 + 1
5q ≤

4
5 + 6

5 = 2 q ≥ 1
6

So that again in all cases N∗Disk ≤ 2.

Hence, N∗ ≤ 4� 50. This is because D = DCPU +DDisk and Dmax = max
(
DCPU

max , DDisk
max

)
, and

A+B

max(a1, a2, b1, b2)
≤ A

max(a1, a2)
+

B

max(b1, b2)

Numerical computations readily give a tighter bound of about 2.8.

2. [5 points] What values of p and q minimize the system response time E[R]? Provide an explicit upper
bound for E[R].

The system response time is minimized by separately minimizing the response times of the CPU and Disk
sub-systems.
From the previous question, we know that for the CPU sub-system N∗CPU ≤ 2 � 50, so that minimizing

the response time of the CPU sub-system calls for minimizing DCPU
max . This can be readily seen to be

realized through load-balancing, i.e., set p = 1
3 , which yields DCPU

max = 1
6 .

A similar reasoning applies to the Disk sub-system for which N∗Disk ≤ 2 � 50, so that minimizing the

response time of the Disk sub-system also calls for minimizing DDisk
max . This is again realized through

load-balancing, i.e., set q = 1
6 , which yields DDisk

max = 1
6 .

This in turn implies that the Dmax value for the entire system is also Dmax = 1
6 so that the response time

E[R] is upper-bounded by E[R] ≤ 50
6 = 25

3 = 8.333.

3. [5 points] You are now considering either replacing the two CPUs with a single faster CPU of speed 10 or
alternatively the two disks with a single faster (and bigger) disk also of speed 10. Does either of these two
options meaningfully improve the system response time. Justify your answer.

The two sub-systems have the same Dmax value so that improving the performance of one won’t improve
the performance of the other, and since N � N∗, the performance of the overall system won’t be affected
either. Hence, neither of the two proposed replacements yields meaningful improvements in performance.
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Problem 3 [20 points] Consider a system where jobs arrive according to a Poisson process of rate λ, and have
service times whose duration is exponentially distributed with mean 1/µ. Jobs are, however, impatient, and, as
illustrated in Fig. 3, each job that waits in the queue leaves after an exponentially distributed time also of mean
1/µ. In other words, jobs can leave the queue before they reach the server.

Figure 3: System with “impatient” customers.

1. [5 points] Give a Markov chain representation for the system, where the state is the number of jobs.

Given that there are i ≥ 0 customers in the system, transitions to state i+ 1 occur with rate λ, the arrival

Figure 4: Markov chain for system with “impatient” customers.

rate. Conversely, transitions from state i > 0 to state i− 1 occur with rate µ+ (i− 1)µ = iµ. This due to
the fact that the job in service leaves with a rate µ, while the (i− 1) jobs in the queue each leave also with
rate µ. The resulting Markov chain is shown in Fig. 4. Note that the chain is essentially identical to that
of the M/M/∞ queue, which is not surprising since whether in service or waiting in the queue, jobs leave
at the same rate of µ, i.e., a waiting spot in the queue is indistinguishable from the server when it comes to
its effect on state transitions.

2. [10 points] Assuming that the chain is ergodic, provide an expression, function of λ and µ, for the proba-
bility πi that there are i jobs in the system.

The balance equations can be written as

πi =
ρi

i!
π0, i ≥ 0

where ρ = λ
µ , so that the normalization equation is of the form

π0 =

[ ∞∑
i=0

ρi

i!

]−1
= e−ρ

which is positive for all finite values of ρ.

3. [5 points] Based on the expression of πi, propose a simple condition that ensure that the chain is ergodic.

As stated above we have π0 = e−ρ > 0 ,∀ρ < ∞. Hence, the chain is ergodic for all values of λ as long
as µ > 0.
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Problem 4 [10 points] Consider a single server queueing system with an infinite waiting room, and two types
of jobs, where jobs of type i, i = 1, 2, arrive according to a Poisson process of rate λi. The service times of both
types of jobs are exponentially distributed with mean 1/µ, where µ > λ1 + λ2. What is the expected number of
type i jobs in the system as a function of λ1, λ2 and µ?

The system behaves as an M/M/1 queue with total arrival rate λ = λ1 + λ2 and service rate µ. From the
solution of the M/M/1 queue, we know that the expected time in the system of a random job is

E[T ] =
1

µ− λ

From PASTA, we know that both types of jobs sample the system at random times, and therefore also experience
an average system time of E[T ]. Applying Little’s Law, we then get

E[Ni] =
λi

µ− λ
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