CSE 538 — Fall 2016 Midterm
4 Problems — 65 points total

Your Name:
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Figure 1: Discrete Time Markov Chain.

Problem 1 [10 points] Consider the Discrete Time Markov Chain (DTMC) of Fig. 1, where the parameters p
and ¢ satisfy p + ¢ = 1.

1. [5 points] Does the chain admit a limiting distribution? If yes, does it for all combinations of p and ¢ and
why? If no, why not?

The chain does not admit a limiting distribution as it is periodic for all values of p and ¢. If pq # 0, the
period is 2, and if pg = 0, the period is also 2 but for different reasons. When p = 1 and ¢ = 0, only
states 4 and 5 have a non-zero (stationary) probability, which is 1/2. Conversely, when p = 0 and ¢ = 1,
only states 0 and 1 have a non-zero (stationary) probability, which is again 1/2.

2. [5 points] Can you find values for p and ¢ such that 7y = 7 = 1o = 73 = 0 and 74 = 75 = 1/2. Hint:
What does the balance equation for state 5 tells you?
The balance equation for state 5 states that pmy = 5, so that m4y = 75 is only feasible if p = 1 and,

therefore, ¢ = 0. Under theses assumptions, we readily get that mg = 71 = w9 = w3 = 0, i.e., the first four
states are transient, and 74 = 75 = 1/2.



Problem 2 [25 points] Consider the closed system of Fig. 2 that consists of a dual CPU sub-system (CPU1+CPU2),
where CPU1 can process 2 jobs per unit of time and CPU2 can process 4 jobs per unit of time, followed by a dual
Disk sub-systems (Disk1+Disk2), where Disk1 can handle 1 job R/W operations per unit of time and Disk2 can
handle 5 job R/W operations per unit of time. New jobs are assigned to CPU1 with probability p and to CPU2
with probability 1 — p. Similarly, when leaving the CPU sub-system, jobs are assigned to Disk1 with probability

q and to Disk2 with probability 1 — g. The multi-programming level for the system is N = 50.
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Figure 2: Closed system.

1. [15 points] Derive a tight upper bound for the number of jobs in the system, IN*, that corresponds to the
threshold between low and high loads (multi-programming level or N value as per Theo. 7.1).
Hint: Consider the CPU and Disk sub-systems separately and determine their individual thresholds.

In order to characterize N*, we first characterize performance for the CPU and Disk sub-systems sepa-
rately. Specifically, we have
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So in all cases NEPU < 2.



Following a similar approach for the Disk sub-system, we get
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So that again in all cases NI*)iSk <2
Hence, N* < 4 <« 50. This is because D = DCPU + Dpjgk and Dpax = max (DCPU DDiSk), and
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Numerical computations readily give a tighter bound of about 2.8.

. [5 points] What values of p and ¢ minimize the system response time E[R]? Provide an explicit upper
bound for E[R].

The system response time is minimized by separately minimizing the response times of the CPU and Disk
sub-systems.
From the previous question, we know that for the CPU sub-system NEPU < 2 « 50, so that minimizing

the response time of the CPU sub-system calls for minimizing DS&U. This can be readily seen to be
realized through load-balancing, i.e., set p = % which yields DggU = %.

A similar reasoning applies to the Disk sub-system for which Nl*)i sk = 2 < 50, so that minimizing the
Disk

response time of the Disk sub-system also calls for minimizing D 2"

load-balancing, i.e., set g = %, which yields DI]I)];)S(k = é.
This in turn implies that the Dy, value for the entire system is also Dyax = % so that the response time
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E[R] is upper-bounded by E[R] < % = 2 = 8.333.

This is again realized through

. [5 points] You are now considering either replacing the two CPUs with a single faster CPU of speed 10 or
alternatively the two disks with a single faster (and bigger) disk also of speed 10. Does either of these two
options meaningfully improve the system response time. Justify your answer.

The two sub-systems have the same D, value so that improving the performance of one won’t improve
the performance of the other, and since N >> N*, the performance of the overall system won’t be affected
either. Hence, neither of the two proposed replacements yields meaningful improvements in performance.



Problem 3 [20 points] Consider a system where jobs arrive according to a Poisson process of rate A, and have
service times whose duration is exponentially distributed with mean 1/u. Jobs are, however, impatient, and, as
illustrated in Fig. 3, each job that waits in the queue leaves after an exponentially distributed time also of mean
1/p. In other words, jobs can leave the queue before they reach the server.
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Figure 3: System with “impatient” customers.

1. [5 points] Give a Markov chain representation for the system, where the state is the number of jobs.

Given that there are ¢ > 0 customers in the system, transitions to state ¢ + 1 occur with rate A, the arrival
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Figure 4: Markov chain for system with “impatient” customers.

rate. Conversely, transitions from state ¢ > 0 to state ¢ — 1 occur with rate p 4+ (¢ — 1) = iu. This due to
the fact that the job in service leaves with a rate i, while the (¢ — 1) jobs in the queue each leave also with
rate p. The resulting Markov chain is shown in Fig. 4. Note that the chain is essentially identical to that
of the M/M/oo queue, which is not surprising since whether in service or waiting in the queue, jobs leave
at the same rate of p, i.e., a waiting spot in the queue is indistinguishable from the server when it comes to
its effect on state transitions.

2. [10 points] Assuming that the chain is ergodic, provide an expression, function of A and p, for the proba-
bility 7; that there are ¢ jobs in the system.

The balance equations can be written as

e 9] i -1
mn = p— ze_p
0 1
iz

i=0
which is positive for all finite values of p.

3. [5 points] Based on the expression of 7;, propose a simple condition that ensure that the chain is ergodic.

As stated above we have mp = e™” > 0,Vp < oo. Hence, the chain is ergodic for all values of A as long
as p > 0.



Problem 4 [10 points] Consider a single server queueing system with an infinite waiting room, and two types
of jobs, where jobs of type 7,7 = 1, 2, arrive according to a Poisson process of rate )\;. The service times of both
types of jobs are exponentially distributed with mean 1/p, where > A1 + A\o. What is the expected number of
type ¢ jobs in the system as a function of A1, Ay and u?

The system behaves as an M/M/1 queue with total arrival rate A = A\; + Ay and service rate p. From the
solution of the M/M/1 queue, we know that the expected time in the system of a random job is
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From PASTA, we know that both types of jobs sample the system at random times, and therefore also experience
an average system time of F[T']. Applying Little’s Law, we then get




